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Abstract

The experiments described in this thesis form an investigation into the path towards es-
tablishing the requirements of quantum computing in a linear optical system. Our qubits
are polarisation encoded photons for which the basic operations of quantum computing,
single qubit rotations, are a well understood problem. The difficulty lies in the interac-
tion of photons. To achieve these we use measurement induced non-linearities. The first
experiment in this thesis describes the thorough characterisation of a controlled-sign gate
based on such non-linearities. The photons are provided as pairs generated through para-
metric down-conversion, and as such share correlations unlikely to carry over into large scale
implementations of the future. En route to such larger circuits, a characterisation of the
actions of the controlled-sign gate is conducted, when the input qubits have been generated
independently from each other, revealing a large drop in process fidelity. To explore the
cause of this degradation of the gate performance a thorough and highly accurate model
of the gate is derived including the realistic description of faulty circuitry, photon loss and
multi-photon emission by the source. By simulating the effects of the various noise sources
individually, the heretofore largely ignored multi-photon emission is identified as the prime
cause of the degraded gate performance, causing a drop in fidelity nearly three times as
large as any other error source. I further draw the first comparison between the perfor-
mance of an experimental gate to the error probabilities per gate derived as thresholds for
fault-tolerant quantum computing. In the absence of a single vigourous threshold value, I
compare the gate performance to the models that yielded the highest threshold to date as an
upper bound and to the threshold of the Gremlin-model, which allows for the most general
errors. Unsurprisingly this comparison reveals that the implemented gate is clearly insuffi-
cient, however just remedying the multi-photon emission error will allow this architecture
to move to within striking distance of the boundary for fault-tolerant quantum computing.
The utilised methodology can be applied to any gate in any architecture and can, combined
with a suitable model of the noise sources, become an important guide for developments
required to achieve fault tolerant quantum computing. The final experiment on the path
towards linear optical quantum computing is the demonstration of a pair of basic versions
of Shor’s algorithm which display the essential entanglement for the algorithm. The results
again highlight the need for extensive measurements to reveal the fundamental quality of
the implemented algorithm, which is not accessible with limited indicative measurements.

In the second part of the thesis, I describe two experiments on other forms of entangle-
ment by extending the actions of a Fock-State filter, a filter that is capable of attenuating
single photon states stronger than multi-photon states, to produce entangled states. Fur-
thermore this device can be used in conjunction with standard wave-plates to extend the
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range of operations possible on the bi-photonic qutrit space, showing that this setup suffices
to produce any desired qutrit state, thereby giving access to new measurement capabilities
and in the process creating and proving the first entanglement between a qubit and a qutrit.
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1
Introduction

1.1 The Beginning

While many scientists believed physics to be nearly complete in the late 1800’s, theoretical
physics was struggling to explain seeming oddities, which at the dawn of the 20th century
were being unveiled in experiments at an ever increasing rate. Whether the lack of elec-
trons spiralling into the nucleus, or the wavelength dependence of the photoelectric effect,
the findings where unexplainable with existing theory, yet were repeatably demonstrated in
experiments. The solution came from the development of a completely new theory in the
1920’s, which following Planck’s finding of a discrete minimal energy step —a quantum —
was given the name quantum mechanics. After nearly a full century of continuous develop-
ment quantum mechanics has helped derive, explain and predict many seemingly impossible
results, and has now become a well established, yet ever developing theory.

Another major development of the 20th Century, was that of an electronic computation
device, the computer. Originally the size of buildings, the development of the transistor trig-
gered an incredible development: since the 1960’s computational power has approximately
doubled every two years at level financial costs. This was achieved largely by further and
further miniaturisation of transistors. Similarly the storage capacity of common magnetic
hard disks on home computers has increased from few Megabytes at the beginning of the
1990’s to up to a Terabyte in 2007, while retaining the same physical size. Again this in-
crease was made possible through the reduction of the physical size of a data block. This
development, known as Moore’s Law, will run into an obvious boundary, when one bit of
information will have to be stored on less than one electron or atom. However, even prior
to this, the continuous decrease in size will lead to transistors on the size comparable to
atomic proportions. At the latest at this point quantum effects will enter into and alter the
behaviour of computer chips.

This seeming curse also holds great potential. In 1982 Richard Feynman [1] suggested that

1
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it would be more efficient to model the evolution of a quantum system, not with a classical
computer, but on a quantum computer. By doing so, he gave birth to a new concept: that of
quantum computation. Instead of using a system, where information is stored and evaluated
in bits limited to being either off or on, 0 or 1, one can utilise suitable quantum systems.
This enables harnessing the power of the weirdness of quantum mechanics whereby the
individual qubits can be in any superposition state of on and off and can become entangled
with one another. While the initial idea was certainly adventurous and innovative, the lack
of any suitable architecture, algorithm or further application lead to no significant research
efforts until Peter Shor [2] suggested an efficient order finding algorithm for a quantum
computer in 1994, followed by Cirac and Zoller indicating a potential path to quantum
computing with trapped ions [3]. The order finding routine introduced by Shor is related
to factoring of numbers. Factoring, or more precisely the exponential difficulty of factoring
large numbers into their prime factors with a classical computer, is the mechanism on which
many modern cryptographic methods, such as RSA [4], rely. While there is no vigourous
proof that there is no efficient algorithm on a classical computer for the factoring problem,
all efforts to derive such an algorithm so far have failed, leaving the potential existence of a
classic factoring algorithm an interesting, open question. Shor’s algorithm was hence not only
capable of factoring numbers, but by doing so also capable of deciphering strongly encrypted
information. The incredible power of this algorithm, combined with the potential path
towards quantum computing and the advances towards isolating and controlling individual
quantum systems, led to a flourish of both experimental and theoretical research in the
young field of quantum computing. Recently an application more closely related to the
idea of Feynman has been put forward, which allows the calculation of the energy states of
molecules in quantum chemistry [5]. Here the addition of every additional degree of freedom
becomes a substantial challenge to modern super computers, requiring a doubling of the
resources. In a quantum code the addition of a single qubit would suffice to simulate the
additional degree of freedom. Quantum chemistry might be the field with the lowest cross
over point in terms of required qubits to demonstrate an advantage of quantum computing
over a classical regime.

1.2 What it takes: The DiVincenzo Criteria

Many physical architectures have been suggested as a potential candidate for quantum com-
putation, usually because the suggested device and associated qubit would have a particular
feature beneficial for quantum computation. This diversity also led to some confusion as cer-
tain “given” characteristics in one architecture were unachievable, or achievable only with
tremendous difficulty, in another. To broadly define the minimum requirements and create
a common basis, David DiVincenzo published a list of capabilities a system must posses so
that it would be considered suitable for potentially achieving quantum computation. The
list has been compiled after years of evolving discussions on the individual requirements for
the different architectures. Since his publication of the original compiled list [6], some items
have been added and/or the importance of the individual points have altered. Hence many
versions of the criteria exist and I do not claim that the here reprinted version is minimal
or complete, but gives a good starting point. In the following we will go though the list and
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discuss the individual requirements in more detail.

1. A scalable physical system with well characterised qubits.

2. The ability to initialise the state of the qubits to a simple fiducial state.

3. Long decoherence times relative to the gate operation time.

4. A “universal” set of quantum gates.

5. A qubit specific measurement capability.

When the DiVincenzo criteria were established the one paradigm for quantum computing
was a circuit based model similar to that of classic computers. In such a circuit model, the
qubits would sequentially undergo logic gate operations. Since then a fundamentally different
approach has been proposed by Rausendorf and Briegel [7]. In the cluster state model a
highly entangled input state is used as a resource and via measurement of the individual
qubits and feed-forward rotations conditional on the prior measurement outcome have been
proven to allow universal quantum computation. The final computation result is simply
encoded in the state of the final set of qubits after the subsequent measurement and feed-
forward rotations. Interestingly as the cluster state computation uses only measurement,
feedforward and single qubit rotations, it requires no two-qubit gate operations. Due to this,
and the inherent specific difficulty of such two-qubit gates in linear optical systems, cluster
states are inherently attractive for optical quantum computing. The concept was adapted
from the general theory of Rausendorf and Briegel to optics independently by Nielsen [8]
and Brown and Rudolph [9]. The difficulty for cluster state quantum computing lies in the
complex input state requirement. For the approach to be operational, one requires lattice
like structures of entangled qubits as shown in figure 1.1. Creating this specific and highly
entangled state is the intrinsic difficulty of cluster state quantum computing. If we do not
limit ourselves to the sole requirements for the actual computation, but consider the complete
picture with the preparation of the resources, then the requirements for circuit based and
cluster state quantum computing are basically the same as the cluster state preparation with
current methods would require the criteria 1 through to 4. Should however a source of a
large quantity of single entangled photons become readily available, cluster state quantum
computing would become instantaneously feasible in the presence of efficient measurement.
In the following, I will give a brief overview over the state of the art in linear optical quantum
computation with respect to the DiVincenzo criteria.

1.2.1 The qubit

Logically a “qubit” is the quantum analogue to a bit, the smallest unit of information, but
unlike the classical bit which is assigned a logic value of either 0 or 1, the qubit can assume any
possible superposition state of 0 and 1. The physical implementation of the logic construct
qubit is in general a sufficiently isolated, individually addressable two-level quantum system.
Sufficiently isolated in this case means that there are no undesired interactions between the
two level system and the rest of the universe. Practically this condition is unfullfilable and
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Uz(α1) Uz(α2) Uz(α3) Uz(α4)

Uz(β1) Uz(β2) Uz(β3) Uz(β4)

Uz(γ1) Uz(γ2) Uz(γ3) Uz(γ4)

a) conventional circuit

α1 ±α2 ±α3 ±α4

β1 ±β2 ±β3 ±β4

γ1 ±γ2 ±γ3 ±γ4

b) cluster circuit

Figure 1.1: The two quantum computing paradigms: a) the “conventional” circuit structure.
The information (and time) flow is left to right, with the qubits identified by the turquoise lines.
The qubit undergoes a number of single qubit rotations U and two-qubit gates symbolised by the
interconnecting wires. The final computational result is decoded by measurement (not shown) of the
qubits after all gate and other processes are complete. In the cluster model of b) a large entangled
state is created. The circles symbolise the qubits and the interconnecting lines the entanglement.
Measuring the qubits left to right with specific settings processes the computation. Measurement
settings for the second phase of qubits depend on the measurement results of the first phase and
alike for subsequent phases. The final result is stored in the last qubits and can be read off with
one last measurement with the required setting depending on all previous measurement results.
Entanglement in a line left to right allows the passing of information in time with single qubit
processes while interconnecting lines are equivalent to two qubit gates. The measurement settings
in the cluster model are not related to the single qubit rotations in the circuit model despite usage
of the same labels. (Used with permission of Andrew White)

thus systems where the undesired interactions are weak and occur on time scales much longer
than the desired interactions and ideally the entire computation suffice. The later is one of the
main difficulties in achieving scalable quantum computation in some architectures. In optical
quantum computation the qubit of choice is the photon, here specifically the polarisation
state of the photon. The logic 0 and 1 states are commonly encoded in the horizontal (H) and
vertical (V) linear polarisation states, as off-the-shelf items such as polarising beamsplitters
are commonly designed to act in this basis.
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1.2.2 Initialisation of Qubits

Qubit initialisation means that prior to the computation we wish to have all our qubits in
a certain state. While it is impossible to rotate a photon of unknown polarisation onto a
desired state with unit efficiency, one can use polarising beamsplitters. These probabilisti-
cally project photons into one of two known orthogonal polarisation states, which are then
spatially separated. While this ensures that all our qubits are in the desired input state,
it operates at the cost of diminished efficiency as some qubits will be reflected out of the
other port of the polarising beamsplitter. Once the polarisation state is known, any desired
polarisation state can be achieved through the usage of waveplates (see section 1.3.3 for a
more detailed discussion). Common commercially available devices have extinction ratios
of 1 : 105 and above, providing us with highly pure qubit states after this initialisation
procedure.

1.2.3 The “universal” gate set

One universal set of quantum gates is formed by the combination of arbitrary single qubit
rotations, and at least one two-qubit entangling gate from the Clifford group.

Single qubit gates

Single qubit gates, as the name suggest, affect the state of only a single qubit, by mapping
the input state on to an output state that depends on the set angle of the single qubit gate.
The set angle is usually the angle of the rotation around a fixed axis in the Poincaré sphere.
It can be shown [10] that waveplates are capable of performing any arbitrary single qubit
rotation on polarisation encoded qubits with very high precision. Specifically a sequence of
λ/4 - λ/2 - λ/4 waveplates allows the rotation of the polarisation of a single qubit from any
given pure input state to any desired pure output state as shown in section 1.3.3.

Two-qubit entangling gates

The probably best known two-qubit entangling gate is the controlled-NOT gate, where the
logic state of the target qubit gets flipped, whenever the control qubit is in the logic 1 state.
The truth-table of the CNOT-gate reads as follows

|00〉 → |00〉,
|01〉 → |01〉,
|10〉 → |11〉 , and

|11〉 → |10〉, (1.1)

where the notation is |CT 〉 identifing the logic states of the control (C) and target (T)
qubit. When the control qubit is in a superposition state of 1√

2
(|0〉 + |1〉) the output is

maximally entangled. This entanglement lies at the heart of many quantum computations,
either as a resource, as in cluster state quantum computation [7–9], where the required
input state is highly entangled, or it is created during the computation, as in the circuit
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based model. In the circuit model the computation progresses as the qubits are passed from
processing element to processing element similar to the architecture of a classical computer.
For optical qubits, generating such a two-qubit entangling gate poses a substantial difficulty.
The interaction cross-section of visible range photons in vacuum is on the order of 10−72cm2

[11] and even in the presence of a highly non-linear crystal the achievable non-linearity at the
single photon level is still many orders of magnitudes weaker than required. This has led to
the wide-spread belief that optical quantum computing would remain infeasible for decades,
until the development of much stronger non-linear materials. Knill, LaFlamme and Milburne
(KLM) showed in a historic paper [12] that such two-qubit gates are in principle possible
with linear optical elements alone. The required non-linearity arises through measurement
coupled with ancilla photons and non-classical interference the best known example of this
being the Hong-Ou-Mandel (HOM) interference [13]. Due to the importance of this issue, a
more detailed discussion will occur in section 1.5.2.

1.2.4 Decoherence time short relative to gate time

Quantum states are subject to continuous evolution. As long as the evolution is coherent,
it can be compensated for and corrected. If the state however evolves incoherently, i.e.
through uncontrolled (or uncontrollable) interaction with the environment, the qubit state
and thus the computation result are no longer correlated with the initial input state. This
decohering action has a common, architecture dependent characteristic time, often referred
to as T2-time, on which it occurs. The origin of this labelling comes from nuclear magnetic
resonance spectroscopy, where it denotes the time on which the spin vector orientation of the
individual nuclei in a sample decohere after a joint initialisation and evolution in a common
magnetic potential. The T2 time is the time base after which the spin state of the nuclei is
no longer coherent and any information encoded therein would be lost. Hence it is essential
to complete all actions on a given qubit and its measurement in a time that is short relative
to its T2-time, so that the result has not been distorted significantly from the desired state.

Photons are virtually interaction free at optical wavelengths, as the electromagnetic en-
vironment at such frequencies is next to a vacuum. Therefore the decoherence time of
polarisation encoded qubits is long. In fact, light from distant galaxies and stars which
has travelled 1.5 · 1010years1 to arrive at Earth still remains partially polarised, indicating
a T2-time for polarisation encoded photons to be on the order of 10 Gyears time in partial
vacuum. The gate time of photons on the other hand is governed by how long a photon
remains in the gate architecture. As photons travel at the speed of light, this gate time is
proportional to the gate architecture dimension. The time for a single photonic CNOT-gate
has been measured to be 145ns [14]. Dividing the gate time by the T2 time gives the order of
number of gate operation that could be performed on a polarisation encoded photonic qubit
before it decoheres. With the above given values, this allows for O1024 gate operations,
which should suffice for any desired problem. Of course it is unlikely that an optical quan-
tum computer would be built in the partial vacuum of outer-space, nor even in free-space as
most current optical gates. A more useful data point may be taken from reference [15] where

1This is a trivia knowledge kind of fact publicised amongst the community by John Rarity and Andrew
White.
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photons were transmitted over 144 km (approximately 50µs) through the earths atmosphere
and polarisation correlations of the entangled photons yielded a visibility above 95%.

1.2.5 Scalability

Scalability is the fundamental requirement that extending a basic system to a larger number
of involved qubits, i.e. in order to encode and thus factor larger numbers, will not require
an exponential increase in resources, either physical, temporal or financial. Should such a
limitation exist, only problems involving less than the feasibly achievable maximal size of
your coding space would be tractable with the given system. In Shor’s algorithm the required
number of bits or qubits scales with the dimension of the problem. Hence, if a quantum
computer was only capable of finding the period of numbers up to a given size, any number
larger than this would be “safe” and could still be used for cryptography.

Nearly every proposed architecture at the moment has a shadow of doubt hanging over it
regarding the full scalability of the approach2. In optics these problems arise from the lack of
deterministic two-qubit gates, as those based on the measurement induced non-linearities are
non-deterministic, but heralded. This means that they work only probabilistically, but their
success is signalled by a specific measurement outcome on the ancilla qubits, see figure 1.2a).
In principle, such gates could be made deterministic, as shown in figure 1.2b), by teleporting
control and target qubit states onto the successfully implemented gate, upon detection of
the success signal of the gate, leading to scalable deterministic gates, but the overhead of
required resources is enormous. In the cluster-state computation [7–9] the efficiency criterion
for the gates can be significantly relaxed as it can be shown that a gate success probability
of > 1/2 is sufficient to build arbitrarily large clusters [17].

A further current limitation of optical quantum computation is the lack of a true single-
photon source and efficient number-resolving photon detectors. The single-photon source
is a device, that emits one and only one photon in a given spatial, spectral and temporal
mode when the trigger is pulled. Such devices are currently under development [18–20]3 ,
but due to a multitude of issues such as timing and frequency jitter, coupling efficiency and
availability, a broad opinion in the community is that they are still a few years away from
their feasible application to optical quantum computation. The desired detector should be
capable of not only detecting photons with, ideally, unit efficiency, but also of differentiating
the number of absorbed photons. In principle, just the capability of differentiating between
one and many photons, while not resolving the actual number of photons (if there are more
than 1) would suffice. Again substantial efforts are currently undertaken worldwide to build
such devices, and individual test-bed devices have been employed [21], but they are not
readily available yet.

2A general, but slightly outdated, overview over the state of the quantum computing efforts in the various
architectures and their current limitations can be found in the Roadmap [16] published by ARDA in 2004.

3There are many, many more publications, and the here given ones are only example cases.
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Figure 1.2: Schematic design of a scalable linear optics gate a) shows the basic gate as sug-
gested in the KLM-paper [12]. The qubits and ancillas interact inside the non-deterministic gate.
The success of the gate is heralded by detection of single photons in every ancilla output mode.
Depending on the detected states of the ancilla photons, specific rotations are fed-forward onto
the qubits, completing the gate action. If more than one photon is detected in any ancilla mode,
the gate has failed and the output is discarded. b) To turn the non-deterministic gate of a) into a
scalable deterministic gate, one repeats the non-deterministic gate till its success is heralded. Upon
a positive signal the logic from the control (|C〉) and target (|T 〉) photons are teleported onto the
photons of the successful gate implementation using their entangled partner photons (The state
|φ〉 symbolises the entanglement between the photons injected into the non-deterministic gate and
those used in the Bell-measurement). In the graph B denotes a deterministic Bell measurement, X
and Z the (potentially) feed forward operations and |φ〉 is a two-qubit entangled state, one photon
of which is injected into the non-deterministic gate as the qubit, while the other photon is used in
the teleportation process. (Figures used and adapted with permission of Andrew White.)

1.2.6 Measurement and Readout

What worth is the might of quantum computation if one is incapable of reading off the result
of the computation? While this point seems trivial, it is not clear in some architectures how
the measurement and evaluation of individual qubits in large ensembles is to be conducted
without interfering with neighbouring qubits. In linear optical quantum computation, read-
out can be achieved by suitable waveplate rotations, polarising beamsplitters and photon
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number counting as discussed previously. As mentioned in the sections above, all these are
well understood problems for polarisation encoded qubits.

1.3 The linear optical tool box

1.3.1 The polarisation encoded qubit

As the qubit is a quantum-equivalent of the classical bit, its computational basis states are
|0〉 and |1〉. Unlike the classical bit, qubits can be in states where they partially populate
both the logical |0〉 and |1〉 state. The qubit is said to be in a superposition state of the
computational basis states. For polarisation encoded qubits, commonly the horizontal and
vertical polarisations are chosen to be the logical basis states. Without loss of generality,
we assign the horizontal polarisation the logical 0 and the vertical polarisation the logical 1,
|H〉 = |0〉; |V 〉 = |1〉. What does a superposition look like? An equal superposition of the
horizontal and vertical component is known as the diagonal state

|D〉 =
1√
2

(
|H〉+ |V 〉

)
=

1√
2

(
|0〉+ |1〉

)
.

Clearly the qubit has some probability of being found in either state, when measured in the
horizontal/vertical basis. Once the photon has travelled through the polarising beamsplit-
ter, it no longer exists in the superposition state, but has been mapped onto two spatially
separated modes:

1√
2

(
|H, 0〉+ |V, 1〉

)
,

where the second entry in the ket is now a label of the spatial mode. Commonly one does not
carry the spatial mode label, and rather refers to the polarising beamsplitter as projecting
the qubit from the previous superposition into the logically pure modes |H〉 and |V 〉. A
general qubit can thus always be written as a decomposition into the logic basis states such
as

|Ψ〉 = α|0〉+ β|1〉 ,where (1.2)

|α|2 + |β|2 = 1 , thus (1.3)

|Ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉
)
, (1.4)

where α, β are complex numbers and γ, θ and φ are all real numbers. The expression
1.4 is a very convenient method of expressing general qubit state with solely real numbers.
The factor eiγ is a global phase, which is not observable and can thus be omitted [22]. The
remaining representation allows the mapping of all single qubit states onto the surface of
the unit sphere, with θ and φ the angles of the state away from the logic |0〉 state, as shown
in figure 1.3. This sphere is known as the Bloch or Poincaré-sphere and is a most useful
representation for a single qubit. Sadly, there is no simple extension to the multi-qubit world,
as the increased dimensionality prevents a useful abstraction into 3-dimensional space. If
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the logic basis states lie at the front and back of the equator of the Poincaré-sphere, the
equal superposition states lie at the poles and at 90◦ angles to the logic basis states along
the equator respectively. These states are the right- and left-circularly and the diagonally
and anti-diagonally linearly polarised states. The alignment of the basis states and the
representation of a qubit state in the Poincaré sphere is shown in an example case in figure
1.3.

Figure 1.3: Mapping of a general one qubit polarisation state onto the Poincaré sphere. The
red arrow indicating the state vector originates from the centre of the sphere and reaches the surface
for all pure states. The faint blue arrow is the projection of the state vector in the linearly polarised
plane. The two angles θ, angle in the linear plane away from the logic 0, here the horizontal state,
and φ, angle out of the linear plane, are then fully sufficient to completely characterise any pure
state. To allow arbitrary states, i.e. any mixed state, the length r of the vector also needs to be
specified.
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The standard set of states used through out this thesis are

|H〉 =

(
1
0

)
|D〉 = 1√

2

(
1
1

)
|R〉 =

1√
2

(
1
i

)

|V 〉 =

(
0
1

)
|A〉 = 1√

2

(
1
−1

)
|L〉 =

1√
2

(
1
−i

)
. (1.5)

We can easily calculate the corresponding density matrices of theses states as

ρ̂ = |ψ〉〈ψ|, (1.6)

which for our standard qubits states gives us the corresponding density matrices of

ρ̂H =

(
1 0
0 0

)
ρ̂D = 1

2

(
1 1
1 1

)
ρ̂R =

1

2

(
1 −i
i 1

)

ρ̂V =

(
0 0
0 1

)
ρ̂A = 1

2

(
1 −1
−1 1

)
ρ̂L =

1

2

(
1 i
−i 1

)
. (1.7)

1.3.2 What is entanglement: Two twenty line introductions to
entanglement

Arguably the most intriguing attribute of a quantum system with two or more particles is
the possibility of entanglement between them. A system is said to be entangled if one can no
longer describe the state of the system by the tensor product of the states of the individual
qubits, i.e. when the notation

|Ψ〉 = |ψ1〉|ψ2〉|ψ3〉 · · · |ψN〉, (1.8)

where N is the number of quantum subsystems, no longer adequately describes the state.
States that do fulfil equation 1.8 are said to be separable, as separate, independent wave-
functions suffice to fully describe the state. The most famous two-qubit states that exhibit
entanglement, i.e. are non-separable, are the four Bell-states. These are:

|φ+〉 = 1√
2

(
|HH〉+ |V V 〉

)
,

|φ−〉 = 1√
2

(
|HH〉 − |V V 〉

)
,

|ψ+〉 = 1√
2

(
|HV 〉+ |V H〉

)
,

|ψ−〉 = 1√
2

(
|HV 〉 − |V H〉

)
. (1.9)

The bizarre signature of entanglement is that measurements on these states yield correlations
of the measurement results for the two qubits not only in the initial basis, where the output
of each individual measurement is well defined, but also in any other arbitrary basis. While
in these basis the measurement results on a single qubit are purely random, the perfect
correlations of the measurement results for the two particles are retained if they are both
measured in the same basis.
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While the first definition should have satisfied the theoretically minded, it might have left
those with an experimental background slightly dissatisfied as it discusses the mathematical
rather than the physical properties of the states. If one looks at the information encoded
onto the states, and assuming we use an extended code range where we annotate the four
individual Bell States with the logic values 0, 1, 2, 3. (Alternatively, if we want to remain
in the normal bit range using only ones and zeros, we can map the four states on the bits
range by using the following mapping 04 → 00, 14 → 01, 24 → 10 and 34 → 11 .) Assuming
that a priori all states are equally likely to be transmitted, then there is no information that
can be gained by measuring just one qubit. Not even a separate measurement of the two
qubits in the logic basis will reveal all the information. While this allows the distinction
between the Φ± and the ψ± states, it still does not identify exactly which one of the four
Bell-states was sent and thus which bit value was transmitted. It is only when we measure in
a basis formed by states that are orthogonal to those forming the logic basis, which leads to
the measurement outcome of each individual measurement to become completely random,
that we can identify the correlations of the measurements i.e. the plus or minus signs.
This absurdity of having to measure in a basis in which the individual single measurement
outcome yields no information, but where the joint measurement of our entangled system
reveals all of the information, is the fundamental capacity of entanglement.

It is not (yet) fully understood how, why or even if entanglement is essential in quantum
computing, but so far it appears that routines such as Shor’s algorithm do require it at some
level.

1.3.3 Single qubit operations and waveplates

The evolution of a closed quantum system can be described by the action of unitary operators
on the density matrix of the initial state.

ρ̂out = Û ρ̂inÛ
† (1.10)

In the case of our single qubit state matrices of equation 1.7, the corresponding unitaries are
also 2 × 2 matrices. The most general notation of a single qubit unitary is the rotation by
an angle θ around an axis defined by the orthogonal basis vectors ~n (omitting all hats from
now on for convenience),

U = e−i
α
2R~n(θ) and (1.11)

R~n(θ) ≡ e−iθ~n·
~σ
2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ), (1.12)

where α is a real number and θ a real angle with ~n the three dimensional unit vector and ~σ
the vector containing the three Pauli matrices X, Y, Z. This general case can be simplified
to the utilisation of three specific rotations, which suffice to emulate any single qubit unitary
[22]. The required sequence is

U = e−iα

(
e−

iβ
2 0

0 e
iβ
2

)(
cos γ

2
− sin γ

2

sin γ
2

cos γ
2

)(
e−

iδ
2 0

0 e
iδ
2

)
. (1.13)
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In this decomposition all α, β, γ and δ are real numbers, and we can identify the specific
rotation matrices as defined in equation 1.12 as

U = eiαRz(β)Ry(γ)Rz(δ). (1.14)

The single most useful tool in the lab for altering the polarisation state of our individual
photons are waveplates, which present the unitary operation applied most commonly in the
lab. The common waveplates are quarter- and half-waveplates, where their label refers to
the maximum retardation these birefringent optical elements impose on the extraordinarily
(e) or ordinarily (o) polarised beam, in terms of their design wavelength. Mathematically
we can describe their actions on the density matrices for our states by the unitary operation
they encode. These are

UHWP (θ) = eiπ/2
(

cos 2θ sin 2θ
sin 2θ cos 2θ

)
(1.15)

for a half-waveplate (HWP) and

UQWP (θ) =
1√
2

(
1 + i cos 2θ i sin 2θ

sin 2θ 1− i cos 2θ

)
(1.16)

for a quarter-waveplate (QWP). The angle θ is defined here as to be equivalent to the physical
angle for the setting of the waveplate in the lab with respect to the optic axis and not as in
the Poincaré sphere, which leads to the factor of two in the argument of the trigonometric
functions. In the Poincaré sphere-picture a half-waveplate thus performs a 180◦ clockwise
rotation of the state vector around the set axis θ, while a quarter-waveplate rotates the
vector by 90◦ clockwise around the set position for the optical axis. In the Poincaré-sphere
the rotation axis lies in the plane of the equator and the angle θ is defined with respect to
the polarisation state of the state vector. This can be seen in figure 1.4 where each waveplate
acts on the horizontal state. In either case, if the state vector and the set position of the
optic axis of the waveplate are parallel to each other, the state is not altered.

Comparing the unitaries for the HWP and QWP, we can identify the rotation unitaries
similar to those needed to perform arbitrary single qubit operations. In fact, and as noted
in section 1.2.3, it can be shown from this that a combination of quarter- half- and quarter-
waveplate suffice to implement any single qubit unitary that transforms a pure input state
to a pure output state. A more complete discussion can be found in [10].

1.3.4 General quantum operations

The following section is tightly based on the discussion in Ref. [22]. While the evolution
of a closed quantum system is very nicely described through unitary operators, the process
required for quantum computing will necessarily lead out of this closed space. We therefore
introduce the quantum operation E to describe the evolution of open quantum systems. The
quantum operation maps the density matrix ρ from the original Hilbert space H to the
new density matrix E(ρ) in the space H ′. The quantum operation must fulfil the following
requirements [23]
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Figure 1.4: Actions of a) a quarter-waveplate and b) a half-waveplate set at an angle θ acting
on a horizontally polarised input state. The dashed line state vector represents the horizontal state
before the action of the wave-plates. The set angle for the optic axis of the waveplate is given by
the dashed blue line, with the blue arrow indicates the rotation of the state. The half-waveplate
causes a rotation of the state vector by 180◦ around the optical axis (o.A.) of the waveplate, while
the quarter-waveplate rotates the state by 90◦. A half-waveplate will therefore not move a state
away from the equator of the Poincaré sphere, while it will also transfer right circular light to left
circular light and vice versa irrespective of the set angle of the waveplate. Quarter-waveplates can
be used to move a state from/to the equator.

1. E transforms a physical density matrix into another physical density matrix. This
requires

∀ρ with Tr(ρ) = 1, T r
(
E(ρ)

)
= 1.

2. E must be convex and linear.

E
(∑

k

pkρk

)
=
∑

k

pkE(ρk)

3. The map has to be positive.
E(ρ) > 0 , if ρ > 0

4. E must be complete and positive. In an arbitrary space A

EH ⊗ IA(ρH⊗A) > 0 , if ρH⊗A > 0

.

The quantum operation can now be seen as describing any physical process enacted on a
subsystem of a larger closed quantum system. The largest possible closed quantum system
(and thus most general) is the universe. We can thus evolve the universe with a unitary, in
such a manner that

ρ′ = U
(
ρ⊗ |e0〉〈e0|

)
U †, (1.17)
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where ρ is the initial state of the subsystem we are interested in, {|ek〉} is a complete basis
for the universe, which is initially in the state |e0〉. By tracing out the remainder of the
universe, we can find the state of our subsystem of interest as

E(ρ) =
∑

k

〈ek|ρ′|ek〉 =
∑

k

EkρE
†
k, (1.18)

where E†k = 〈ek|U |e0〉 is an operator on the subspace of the system of interest. After
measurement, one finds the system in the state

ρk ∝ 〈ek|ρ′|ek〉 = EkρE
†
k (1.19)

This notation is known as the operator-sum or Kraus representation, where Ek are the Kraus
operators. One can then easily see that the action of the quantum operation on the system
is to randomly, with probability

pk = Tr

(
EkρE

†
k

)
, (1.20)

replace the initial state ρ with the state ρk. We shall make use of this notation and decom-
position when discussing the measurement of an unknown process in section 1.4.3.

1.4 Measuring states and gates

As noted in section 1.2.6, the capability to accurately determine the state of a quantum
system through measurement is essential in order to read out the results of the computation.
The difficulty lies in the nature of quantum physics, where any measurement that reveals
some information is necessarily at least partially projective. This implies that the process
of measuring the state acts on the qubit state and alters it. Furthermore, even a fully
projective measurement on a single quantum system reveals only one bit of information
about the state, which is that the qubit was not in a state orthogonal to the measurement
result. Additionally, due to the projection our qubit is now in the state corresponding to the
measurement result and no further information about the qubits initial state is available.
Performing solely a single fully projective measurement on photons is thus not a suitable
practice4.

1.4.1 Stokes parameters and single qubit state tomography

If, instead of a single copy of our to be determined polarised photon, we have an infinitely
large ensemble of equally prepared photons, then we can measure the Stokes-parameters
to fully determine the state of this ensemble of photons. The Stokes vector ~S is used to
describe the polarisation of a classic light field as introduced by Stokes in 1852 [24]. Its

4Additionally as we need to detect the photon after the projection with the PBS, unless we perform
a non-demolition measurement, the qubit has been absorbed by a detector and thus is actually no longer
available for a second measurement.
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four components S0, S1, S2, S3 are the measures of the difference of intensity of orthogonal
polarisations in the different polarisation bases.

~S =




S ′0
S ′1
S ′2
S ′3


 , with (1.21)

S ′0 = 1

S ′1 =
IH − IV
IH + IV

S ′2 =
ID − IA
ID + IA

S ′3 =
IR − IL
IR + IL

. (1.22)

The ′ indicates the use of Stokes parameters normalised to the total intensity. We can
immediatly relate these measures to the Poincaré-sphere by noting

S ′0 = 1

S ′1 = r cos 2θ cos 2φ

S ′2 = r cos 2θ sin 2φ

S ′3 = r sin 2φ , where the degree of polarisation r is

r =
√
S ′21 + S ′22 + S ′23 . (1.23)

The Stokes vector can be used in conjunction with Mueller matrices [11] to propagate the
polarisation of a light beam through various optical elements analogous to the ray matrices
for Gaussian beam propagation. In the quantum picture, the same idea and measurement
techniques can be used to derive the density matrix ρ̂. By remembering that a measurement
is the projection of the state |ψ〉 into the basis of the respective measurement operator,
we can identify the Stokes parameters as the expectation values of measurements in their
respective bases. While the actual physical measurements remain the same, we write them
now as

S ′0 = |〈H|ψ〉|2+|〈V |ψ〉|2
|〈H|ψ〉|2+|〈V |ψ〉|2 ≡ 1

S ′1 = |〈H|ψ〉|2−|〈V |ψ〉|2
|〈H|ψ〉|2+|〈V |ψ〉|2

S ′2 = |〈D|ψ〉|2−|〈A|ψ〉|2
|〈H|ψ〉|2+|〈V |ψ〉|2 =

〈H|ψ〉〈ψ|V 〉+ 〈V |ψ〉〈ψ|H〉
|〈H|ψ〉|2 + |〈V |ψ〉|2

S ′3 = |〈R|ψ〉|2−|〈L|ψ〉|2
|〈H|ψ〉|2+|〈V |ψ〉|2 =

i(〈H|ψ〉〈ψ|V 〉 − 〈V |ψ〉〈ψ|H〉)
|〈H|ψ〉|2 + |〈V |ψ〉|2 . (1.24)

Recalling the definition of the density matirices for the states given in equation 1.7, we see
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that the Stokes parameters in the quantum picture correspond to

S ′0 =

(
1 0
0 1

)
≡ σI

S ′1 =

(
1 0
0 −1

)
≡ σZ

S ′2 =

(
0 1
1 0

)
≡ σX

S ′3 =

(
0 i
−i 0

)
≡ σY , (1.25)

which are simply the four Pauli-spin matrices. It becomes straight-forward, how to recon-
struct the measured quantum state from these, as we can use the individual spin matrices
to describe all aspects of the state. The density matrix for the single photon state can thus
be reconstructed as

ρ̂ =
1

2

(
S ′0 + S ′1 S ′2 − iS ′3
S ′2 + iS ′3 S ′0 − S ′1

)
, (1.26)

revealing the state of the measured photons. One further difficulty arises: Commonly the
measurement data is affected by noise, which for example could be caused by slight mis-
alignments of the measurement apparatus or detector dark counts. This measurement noise
tends to cause the derivation of unphysical states if one blindly applies the above described
method. Obviously one has some natural doubts about the accuracy of the results if the
reconstructed state is unphysical. A mathematical method known as maximum likelihood
has been employed to prevent such unphysical results. This routine searches the space of all
physical density matrices for the one which is most likely to have created the measurement
results obtained. A methodology for maximum likelihood tomography is given in [25, 26]
and is discussed in more detail in [10].

1.4.2 Two qubit state tomography

Two qubit state tomography is the extension of the mechanisms developed in the section 1.4.1
to the higher dimensional space in which pairs of photons can exist. The formalism is easily
extended by defining the new basis states as all pair-wise combinations of the single qubit
logic states. This leaves us with

|HH〉 =




1
0
0
0


 , |HV 〉 =




0
1
0
0


 ,

|V H〉 =




0
0
1
0


 , |V V 〉 =




0
0
0
1


 (1.27)
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as our new basis state vectors. The corresponding density matrices can be developed similar
to the one qubit case and an example is given below for the |HH〉 state. The other states
can easily be developed analogously to the example case. We expand the state

ρHH = |HH〉〈HH|, which equals


1
0
0
0



(

1 0 0 0
)

=




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 = ρHH (1.28)

In order to determine the actual two qubit state, we have to effectively characterise each
individual qubit with respect to the state of the other photon. We thus utilise the same set
of measurement states for each qubit as previously in the single qubit case. This leaves us
with a minimum of 16 measurements, which are constructed as {H,V,D,R}⊗{H,V,D,R}.
The reconstruction is again an extension of the methods used in the single qubit case, with
details discussed in [26].

1.4.3 Process Tomography

This section is (again) tightly based on Ref. [22], which also contains a nice example for the
single qubit process tomography on page 393.

Similar to measuring the state of a quantum particle, where a single measurement does
not suffice to completely characterise the state of a qubit, the process a quantum operation
enacts can not be fully characterised by using just a single input state and measuring the
output state. Using the quantum operation notation introduced in section 1.3.4, we can write
our arbitrary process as the action on our quantum system via the map E . We already know
from equation 1.19 that there exists a specific decomposition into a sum of certain operational
elements that, when acted on the original density matrix reproduces the transformation
as found by the actual operation. These operational elements {Ek} used to describe the
quantum operation usually have no sensible experimental counterpart. Therefore rather
than to adopt the experimental measurements to suit an unknown process, we use a fixed
set of operators Ẽi that form a basis for the set of operations on the state space at hand. It
must be possible then to decompose our map E with our basis operators so that

E(ρ) =
∑

mn

ẼmρẼ
†
nχmn , where χmn ≡

∑

i

eime
∗
in (1.29)

are the complex valued elements of the χ-matrix that completely suffices to describe the
operation in the given basis of operators we choose. Experimentally, we can find the en-
tries χmn of the matrix by enacting our quantum operation on the complete basis set of
states of our space and performing state tomography on the output. For a single qubit
process, this requires the input of a minimum of 4 states, which can generally be written

as

{
|n〉, |m〉, |+〉 = (|n〉+|m〉)√

2
, |i+〉 = (|n〉+i|m〉)√

2

}
, where |n〉 and |m〉 form a basis in the single

qubit space. As it is possible to decompose the action on any state |n〉〈m| into the action
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on the set of states given above, we can write

E(|n〉〈m|) = E(|+〉〈+|) + iE(|i+〉〈i+ |)− 1 + i

2
E(|n〉〈n|)− 1 + i

2
E(|m〉〈m|). (1.30)

Note that we do not need to reconstruct the individual states, the required data set that
we need to measure however coincides with those required for the state tomographies of
our input states. We can then reconstruct the states E(ρj) which can be given as a linear
combination of our basis states ρk by

E(ρj) =
∑

k

λjkρk. (1.31)

We can expand our map E into the operators of our basis, such that

ẼmρjẼ
†
n =

∑

k

βmnjk ρk, (1.32)

where the βmnjk are complex numbers which can be determined through linear algebra for
the specific set of input state and operators. Combining this notation with that from equa-
tion 1.29, we arrive at

∑

k

∑

mn

χmnβ
mn
jk ρk =

∑

k

λjkρk and (1.33)

∑

mn

χmnβ
mn
jk = λjk, (1.34)

which gives us a necessary and sufficient condition for our χ matrix.
Experimentally, for our polarisation encoded photonic qubits, the obvious choices for

our basis states are |H〉 and |V 〉 as well as |D〉 = (|H〉+|V 〉)√
2

and |R〉 = (|H〉+i|V 〉)√
2

as our
superposition states. Using these states as inputs, and performing state tomography, we
can use the above formalism to reconstruct the χ matrix for the operation of any black-
box quantum operation. As there is no unique basis into which we have to decompose our
operation, one commonly chosen basis is the Pauli bases, where the quantum operations are
the Pauli spin matrices. In general, process tomography requires 24n measurements, where
n is the number of qubits. This exponential increase makes the characterisation of large
systems with current methods unfeasible at the present time.

Process tomography is independent of the architecture and has been first described in
detail in Ref. [27] generally, and in [28] with a specific view to trapped ions as qubits. The
first description of process tomography in any architecture was on an optical two-qubit gate
[29], which was also the first to employ a full set of constraints on the maximum-likelihood
reconstruction-technique, which ensured that despite experimental noise the reconstructed
processes were physical (i.e. process is completely positive and does not increase the trace).

1.4.4 Measuring the gate performance

In the previous chapters I have introduced ways to measure the state of single and multi-
photon states, and a procedure to analyse the process of a quantum black-box operation. I



20 Introduction

will now introduce the actual measures used throughout the thesis to gauge the quality of
the states and processes investigated in this thesis. The measures commonly discussed for
states are the Purity, which is simply the trace of the square of the density matrix, thus

P = Tr(ρ2). (1.35)

The Linear Entropy, measuring the degree of mixture of a state is defined as

SL =
4

3

(
1− Tr(ρ2)

)
, (1.36)

and ranges from 0 for a pure state, to 1 for a maximally mixed state. The Tangle again
varies from 0 for a completely separable state to 1 for a maximally entangled state and is a
measure of the quantum coherence of a mixed quantum state. It is defined as

T = (max{λ1 − λ2 − λ3 − λ4, 0})2, (1.37)

where the λi are the ordered (from biggest to smallest) eigenvalues of ρρ̃ with ρ̃ being the
spin-flipped density matrix defined as ρ̃ = (Y ⊗ Y )ρ∗(Y ⊗ Y ). All of the above measures
characterise a single quantum state. When analysing the actions of the gate, it will be
important to compare them with the expected ideal states. For this we use the Fidelity,
defined as

F (σ, ρ) ≡
(
Tr

√√
σρ
√
σ
)2
, (1.38)

for the density matrices ρ and σ. The Fidelity ranges from 0 to 1, where 1 reveals a set of
identical states and 0 an orthogonal set of states. We will use the same definition to compare
the χ-matrices of our processes to the ideal. Such a fidelity measure is then denoted the
Process Fidelity, Fp. While the process fidelity is a somewhat intuitive measure revealing
the closeness (or not) of the implemented operation with the desired process, it is actually
not a suitable metric, as it does not obey desired chaining relations for multiple subsequent
processes [30]. However it can be used to construct any of several suitable metrics such as
the stabilized trace distance. As the limitations for the process fidelity arise mainly once
one starts chaining multiple gates, I will retain the usage of the process fidelity as I feel that
it is a more intuitively related measure of the performance of the quantum circuit. One can
derive the Average Gate Fidelity, F , from the process fidelity as

F =
d · Fp + 1

d+ 1
, (1.39)

where d is the dimension of the quantum system, i.e. d = 2 for a single qubit and d = 4
for two qubit systems. The average gate fidelity, contrary to the process fidelity, obeys the
chaining requirement for subsequent gates and can be physically interpreted as the fidelity
of all pure input states averaged over all output states. Nevertheless as it is variant under
alternation of the dimensionally of the problem it still is not a suitable metric. For a more
detailed discussion on state and process measures, their pros and cons, the reader is referred
to [26, 30, 31].
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1.5 Two photon interaction: Making it happen

One of the key reasons why photons are such good qubits, is also their downfall. The fact that
photons are virtually interaction-free leads to low decoherence, but also makes the control
of a single photon via another single photon seemingly all but impossible. There are no
materials with non-linearities large enough to alter the polarisation state of a single photon
with the power of single photons for the full π-phase shift required for fully entangling gates.
Cavity quantum electrodynamics (cavity QED) is closest to this goal, with a scheme [32],
where single atoms are trapped inside or floated through very high finesse cavities. The
circular birefringence of the atom pumped by the first photon rotates the linear polarisation
state of the target photon while it is passing through the cavity. The polarisation state of
the target photon picks up a phase shift depending on which of the two upper levels of the
three level atom the state of the atom was pumped to by the first photon. A significant
downside of this method is the involved complexity, requiring large scale ultra-high vacuum
devices, atomic beams and high-finess cavities, which as of now make the scaling to large
qubit numbers infeasible.

A further scheme for optical quantum computing requires phase shifts much smaller than
the full π, yet larger than currently readily available outside cavity QED. In this scheme [33],
the single photons of the control and target are split spatially into two logic rails, where the
logic |1〉 state of each interact with a bright coherent squeezed state, inside a strong Kerr
non-linearity, thereby encoding a slight phase shift on the squeezed state. Through suitable
design, the control and target encode equal but opposite phase shifts. Through a homodyne
measurement after the dual interaction one either detects a phase shift, in which case an
odd parity of the logic states of the control and target photon is revealed, or no phase-shift
is found, indicating even parity [33]. Through appropriate feed-forward of this measurement
result, entanglement between the two single photons of the control and target can be achieved
and i.e. a CNOT-gate can be implemented.

The need for such currently unachievable non-linearities was circumvented by measure-
ment induced non-linearities as suggested by Knill Laflamme and Milburn (KLM) in their
ground breaking paper [12]. They devised a method which used the detection of certain
events to project the general state onto a sub-state, in which the photons have seemingly
interacted. By using a sophisticated network of interferometers they showed that it was
possible to encode a sign-shift on the combined state of the photons for only one specific
logically pure input state, while leaving all other logic input states unchanged.

1.5.1 Hong-Ou-Mandel Interference

At the core of this interaction lies the non-classical interference of single photons, first ob-
served by Hong, Ou and Mandel (HOM) [13]. The HOM-effect occurs when two indistin-
guishable photons impinge on a 50:50 beamsplitter one from either side. While individually
each photon has a probability of 50% to be either reflected or transmitted, the two photons
will always bunch together, meaning, if one is reflected, the other one is always transmitted,
leaving one mode populated with two indistinguishable photons, while the other mode is the
vacuum-mode, this behaviour is depicted in figure 1.5.
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Figure 1.5: Schematic of the Hong-Ou-Mandel interference. when two indistinguishable pho-
tons (here arrows) impinge on a 50:50 beamsplitter, their bosonic nature forces them to bunch
together and leave as a pair in either the c or d mode. Hence the double arrows in the output
modes are to be understood as existing either-or.

The general mathematical description using the mode labels from figure 1.5 works as
follows. If the photons are distinguishable5 in any which way, i.e. in their arrival time,
this introduces an effective mode-labelling, and there will be no interference. Hence the
probability of the two photons emerging in the different modes is simply the product of the
probabilities of each photon taking a certain path. Thus the probability of detecting a single
photon in each output mode can be written as:

Pdist = η2 + (1− η)2, (1.40)

which for the reflectivity of η = 1
2

equals the well expected 1/2, with the two terms consisting
of the two options of either reflecting both photons, η2, or transmitting both, (1− η)2, with
all other cases not leading to a single photon in each output port. Thus for distinguishable
photons one will be able to observe a single photon in each output mode in 50% of all cases.

If however two indistinguishable photons are injected in modes a and b, at the beam-
splitter each photon experiences the following transformation

a†a → i
√
ηa†c +

√
1− ηa†d and (1.41)

a†b → i
√
ηa†d +

√
1− ηa†c. (1.42)

For the input state
|Ψin〉 = a†aa

†
b|00〉 (1.43)

the resulting state is then given by the product of the individual output states above, hence

|Ψout〉 =

(
i
√
η
√

1− ηa†2c + i
√
η
√

1− ηa†2d + (1− 2η)a†ca
†
d

)
|00〉. (1.44)

5Note that distinguishability is a continuous parameter that ranges from perfect indistinguishability to
perfectly distinguishability via all values in between. For example when photons of different, yet non-
orthogonal polarisation interfere, they are said to be partially distinguishable, and will yield some limited
interference where the interaction strength is proportional to there degree of indistinguishability.



1.5 Two photon interaction: Making it happen 23

In the KLM scheme successful operation is signalled by each of our modes being populated by
exactly one photon. In principle this can be determined by a non-demolition measurement
of the photon number in each mode. In practise, optical quantum computation relies on
the coincident detection of photons, assuming that they are single photons, to herald the
successful gate operation. Hence we are only interested in those terms, where both modes
are populated, as only those will trigger a coincidence signal and thus a registered event.
As the probability is the absolute square of the amplitude, the probability for a coincident
detection with indistinguishable photons becomes

Pindist = |(1− 2η)|2 (1.45)

For η = 1
2

this term vanishes, resulting in no cases where both output modes will be popu-
lated.

By taking the difference between the probabilities of detecting one photon in each output
mode for the distinguishable and the indistinguishable case, we can define the visibility of
the non-classical interference6 as

V =
Pdist − Pindist

Pdist
=

(η2 + (1− η)2)− |(1− 2η)|2
(η2 + (1− η)2)

(1.46)

Experimentally the visibility is measured by the reduction in count rates between the
non-interfering rate (distinguishable photons) and the one where the photons interact (in-
distinguishable photons),

V =
Cdistinguishable − Cindistinguishable

Cdistinguishable
. (1.47)

The visibility of the Hong-Ou-Mandel-interference is therefore a measure of the degree of
indistinguishability of the photons.

1.5.2 Making entangling gates

While the HOM-interference with a η = 1
2

beamsplitter allows a measure of the degree
of indistinguishability of photons, this by itself is not yet very useful for optical quantum
computing. At first glance it may appear that only the maximal visibility is altered when
η 6= 1/2. However when pairing the HOM-interference with a classical interferometer, as
suggested by Ralph et al. [34] that separates the logic basis states as shown in figure 1.6,
then the interaction no longer applies to all indistinguishable photons, but now only to
those of horizontal polarisation, the logic |0〉 state. Vertical photons can never reach the
central beamsplitter and thus even if indistinguishable in principle can never interact. The
transformation applied by the circuit depicted in figure 1.6 is given mathematically by the
following: The input state

6The more common definition if visibility is V = Pdist−Pindist

Pdist+Pindist
, which is useful for signals that vary from

the average both positively and negatively. For non-classical quantum interference however the coincidence
count rate will only decrease and ideally to zero, hence the slightly altered definition is commonly used in
this field.
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Figure 1.6: By separating the logic basis states H and V with polarising beamsplitters, the
non-classical interaction at the central beamsplitter can only occur between horizontally polarised
photons. The vertical photons are attenuated in their amplitude on the reflecting beamsplitters (loss
indicated by dashed arrows) in order to retain balanced amplitudes between H and V polarised
photons. After the non-classical interference for the H and the loss for the V component, the
spatially separated complementary logic modes are recombined.

|Ψin〉 = (αa†H + βa†V )(γb†H + δb†V )|00〉, (1.48)

where α and β as well as γ and δ obey the normalisation conditions imposed by eqn. 1.3,
gets transformed following the rules

a†H → i
√
ηc†H +

√
1− ηd†H , (1.49)

b†H → i
√
ηd†H +

√
1− ηe†H (1.50)

for the horizontal component, and

a†V → i
√
ηc†V , (1.51)

b†V → i
√
ηd†V (1.52)

for the vertical component. The loss on the vertical component is incorporated solely to
retain balanced amplitudes between the horizontal and vertical components. For the general
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Figure 1.7: A controlled Z gate shown on the left hand side in the yellow shade equals to a
controlled-NOT gate when one of the two qubits is bracketed by Hadamard gates before and after
the gate action.

input state given in eqn 1.48 the resultant output state of the gate is given as

|Ψout〉 =

(
−αγηc†Hd†H

+ iαγ
√

1− η√ηc†2H
− αδηc†Hd

†
V

+ iαγ
√

1− η√ηd†2H
+ αδ(1− η)c†Hd

†
H

+ iαδ
√

1− η√ηd†Hd†V
− βγηc†V d

†
H

+ iβγ
√

1− η√ηc†Hc†V
− βδηc†V d

†
V

)
|00〉, (1.53)

which once simplified by post-selection on cases with one photon in each output mode c and
d, reduces to

|Ψout〉 =

(
αγ
(
1− 2η

)
c†Hd

†
H − αδηc†Hd†V − βγηc†V d†H − βδηc†V d†V

)
|00〉 (1.54)

For the specific choice of η = 1
3

the output state is not only balanced in its probabilities,

but the logic c†Hd
†
H |00〉 state experiences a phaseshift relative to all other states. This change

in sign named this gate the controlled-sign (CSign) gate, also known as the controlled-phase
or controlled-Z (CZ) gate and belongs to the class of entangling two qubit gates that is
required for quantum computing to make a “universal” gate set. It is closely related to the
well known CNOT-gate, a CZ gate with Hadamard-gates on the in and output of the target
qubit forms a CNOT gate, as shown in figure 1.7, where the Hadamard-gate is the single
qubit gate given by

H =
1√
2

(
1 1
1 −1

)
.

The Hadamard gate maps the logic basis states to the equal real superposition states, in our
case H|H〉 = 1√

2
(|H〉+ |V 〉) = |D〉. For polarisation encoded photonic qubits this action can
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Figure 1.8: Experimentally the only difference between a polarisation encoded controlled Sign
gate and a controlled-NOT gate is a half-waveplate set at 22.5◦ before the logic modes are split
for the gate and after they are recombined. This waveplate acts as a Hadamard-gate converting a
logically pure population into an equal superposition.

be achieved with a half-waveplate set at 22.5◦. Therefore the only difference between the
CNOT- and the CZ-gate in optical quantum computing is the addition of a half-waveplate
on the in and output mode of the target qubit as shown in the circuit of figure 1.8. It should
be noted at this point that the CZ-gate effectively has no specified control and target qubit
as its action is symmetric. The phase shift gets added only when both input qubits are in
the logic 1 state. As briefly touched upon we require that the output modes of our gates
are populated by exactly one photon and that we had strictly single photon inputs. In this
case the CZ gate of [34] works in post-selection on coincidenent detection of single photons
in each output mode. Therefore the gate works only 1/9th of the time, the other 8/9th of the
time the gate fails. However this failure is detectable and thus these cases can be discarded.

In principle this requires measuring the population of the output modes, and since a full
projective measurement of a quantum state is destructive, we are required to incorporate a
non-demolition measurement of the output mode population. Such a measurement can with
some probability measure the photon number of the given mode without destroying it [35].
An alternative path is shown in the original work of KLM, where it is shown that the use
of further ancilla photons can alleviate the need to detect the qubit photons: If with the
appropriate circuit a single photon is detected in each ancilla mode, the gate has operated
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successfully and the qubit photons remain unaffected and available for further computational
steps. Furthermore, KLM shows that it is possible to increase the success rate of the gate
from 1/9 to arbitrarily close to 1: the entangling step is performed between two ancilla
photons. Once successful gate operation has been detected the logic state of our qubits is
teleported [36–39] onto the output of the the gate. This principle operation is depicted in
figure 1.2. Thus, while in its current form very resource intensive, this method in fact allows
scalable quantum computation with non-deterministic gates.

A much more resource friendly method of optical quantum computation is the cluster
state quantum computation paradigm. Its draw back is that it requires large entangled
states as input, a resource not currently available. However the non-deterministic gates of
the KLM-type can be used to create the entangled input states off-line, meaning that the
gates produce the input state, and computation takes place once the cluster has reached
a sufficient size for the applicable algorithm. Alternatively, future sources [40–42] might
readily produce entangled photons which can then be used to build the input state for cluster
computation. If either one of these methodologies can efficiently and readily produce large
entangled states, cluster-state quantum computing will be the simpler computing paradigm
to implement in optics as no two-qubit gates are required during the computation.
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2
Single photons, and how to make them

Gates based on measurement induced non-linearities require single photon inputs for all gate
and ancilla modes. This requirement is caused by the nature of the non-classical interference,
which is significantly altered if more than one photon is present in one mode (see section
4.4.3 for a more detailed discussion). Ideally, this requires the abundant presence of single
photon sources: devices which emit one and only one photon in a given spatial, spectral
and temporal mode upon a triggering signal. Such a device does not exist (yet), though
promising research is underway in various architectures [43].

2.1 The optical workhorse: Parametric down-conversion

In the absence of true single photon sources, research has turned to the next best thing:
generating pairs of photons simultaneously in well defined spectral, spatial and temporal
modes. This process is known as spontaneous parametric down conversion (PDC). It was
first observed in 1969/1970 [44, 45] and at first appears to be the inverse of second harmonic
generation (SHG), as a high energy photon decays into two low energy photons. By suitable
configuration of ones experimental setup, one can design their PDC source to emit the pairs of
photons in either different spatial, spectral or polarisation modes, or a combination of these
which allows the separation of the photons in different logic modes for the experiments.
During the work presented in this thesis the down converted photons are emitted in different
spatial modes allowing their separation for the experiments.

Both of these effects, SHG and PDC, can only occur in the presence of a non-linear
medium1, where the dielectric polarisation (dipole moment per unit volume) responds in a
non-linear manner to an electric field. This response can be expanded in a power series of

1Strictly speaking, the vacuum has a non-zero polarisabillity and is thus a very weak non-linear material,
hence technically no medium needs to be present.
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the electric field2 :
P (t) = χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ... (2.1)

To understand the conversion process, consider these cases: In a linear material, combining
two oscillating fields of the frequency ω is similar to the sum of two sine waves of the same
frequency and will hence produce a resulting oscillating field at the same frequency. Inside
a non-linear material the two oscillating fields can produce the product (E1 × E2), which
following the trigonometric identity

2 cosω sinω = sin 2ω (2.2)

gives rise to a field at twice the frequency (Or two fields at half the frequency, reading it
right to left, as is the case in SHG, where two low energy (frequency) pump photons combine
into one high energy output photon). In PDC a pump photon of high energy decays into
two photons of lower energy. What is referred to as PDC throughout this thesis is more
accurately named SPDC — spontaneous parametric down-conversion— as the parametric
process is running well below threshold. As the entire process obeys energy and momentum
conservation, the photons satisfy the following equations inside the non-linear material:

ωp = ωi + ωs, and (2.3)

~kp = ~ki + ~ks, (2.4)

where p denotes the pump, i the idler and s the signal photon. Furthermore the non-linear
crystal can absorb or emit the energy of a phonon during this process, so that neither the
energy relation nor the momentum conservation are strictly obeyed when considering only
the involved photons.

The simplified view given in equation 2.1 however does not necessarily populate the
modes of the signal and idler photon if one follows the classic view as these modes start
from a vacuum population and hence their derivatives would necessarily have a 0 starting
value. To understand the process one needs to consider vacuum fluctuations we requires us
to utilise a quantised approach. A complete derivation of PDC requires a quantisation of the
electric field [46], and will not be presented here, however a much simplified version based
on [10, 47] is given as it will aid in the understanding of some multi-photon features and
their scaling which is an central part of this thesis. For this we will describe the three-wave
mixing process that is PDC using the following interaction Hamiltonian.

Hint = ga†ia
†
sap + g∗aiasa

†
p (2.5)

Here g is a coupling constant (∝ χ(2)) and a(†)n is the annihilation (creation) operator for the
n-th mode. We can see here that the second term describes the annihilation of two photons,
one each in the signal and idler mode while a photon in the pump mode is being created
— sum frequency generation, while the conjugate, the first term, destroys a pump photon
and creates an idler and signal photon and gives us the quantum mechanical description of
parametric down-conversion. We can now utilise this Hamiltonian to evolve the initial state,

2Practically the dielectric susceptibility coefficients χ are of course tensors, but for simplicity this is
ignored here.
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where we take our pump mode to be a coherent state |γ〉p with |γ|2 � 1 and while the idler
and signal modes are both vacuum modes.

|ψ(t)〉 = exp

(−iHint

~

)
|ψ(0)〉 (2.6)

= A
∑

k=0

1

k!

(−itHint

~

)k
|0〉i|0〉s|γ〉p (2.7)

= A[1 +
−itHint

1!~
+

(−itHint

2!~

)2

−
(−itHint

3!~

)3

+ ...]|0〉i|0〉s|γ〉p (2.8)

≈ A[|0i0s〉+
−itgγ
~
|1i1s〉+

(−itgγ
~

)2

|2i2s〉+

(−itgγ
~

)3

|3i3s〉+ ...]⊗ |γp〉 (2.9)

= A

(
|0i0s〉+ κ|1i1s〉+ κ2|2i2s〉+ κ3|3i3s〉+ ...]

)
⊗ |γp〉 (2.10)

Here κ = −itgγ/~ and we assume that the population of the pump mode is not significantly
changed by the interaction, as can generally be assumed for a classical pump field. This
treatment of the interaction shows us that there is some3 small amplitude of generating
pairs of photons in the signal and idler modes, however this is amplitude is typically small
as noted earlier. This amplitude is proportional to the coupling constant and thus χ(2) and
the pump field amplitude. We can see from these equations, that the generation of a pair
of photons is hence directly proportional to the pump power, while the production of two
pairs scales with the square of the pump power and three pairs with the cube and so on.
Typically these higher order terms are much much smaller than the first order term and are
often neglected. However in a regime where the amplitude of the pump field is very high,
these terms can be come significant. Such intense pump fields are typically generated by
femtosecond pulsed pump lasers as were used during the experiments described in this thesis.
Hence the effect of this multi-pair generation is a core result of this thesis and discussed in
detail in Chapter 4

Due to the conservation of energy, one can operate in the degenerate case, where the
two photons of lower frequency are of equal wavelength, which is twice that of the pump
photon. Typically any non-linear material used for frequency conversion purposes exhibits
birefringence, hence, as in SHG, there are two different down-conversion processes, the Type
I and Type II process. In Type I, the idler and signal photons are of the same polarisation
and will thus experience the same refractive indices, if their wavelengths are matched. In
the Type II process the signal and idler photon are of orthogonal polarisation and will thus
experience different refractive indices, which gives rise to a slight temporal delay of one
photon with respect to the other. This delay introduces some distinguishability, which as
discussed in section 1.5 will lead to a reduced visibility, which degrades the gate performance
and thereby reduce the maximal achievable entanglement for our gates. For this thesis,
photons with entanglement from the source are at no stage required nor desired, thus the
effects of this delay are unimportant here. The conservation of momentum also makes a
strict prediction of the respective output angles of the paired photons. During the course

3very, very, very, very ,very, very, very... (Typical efficiencies are on the order of 10−8 to 10−10)
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of my experiments, I used both type-I and type-II sources, which will be discussed in more
detail in the sections 2.2.1 and 2.2.2.

2.1.1 The Coincidence detection regime

Experimental optical quantum computing is marred by two main problems, the first is the
absence of single photon guns as discussed earlier. This however could be tolerated if one had
ideally unit efficient detectors that can resolve the number of photons that they detected. But
again reality is not so kind as to provide these. In this experimentally horrific world however
experimentalists are thrown a bone by PDC. Since PDC produces pairs of photons, the
correct operation of the circuit can be identified when one observes simultaneous detection
events on all the output modes of the experimental circuit. (Remembering that we required
exactly one photon as input into each of our circuit modes). This detection regime is called
the coincidence basis and limits todays experiments to proof-of-principle test-beds as the
correct operation of a gate can only be assured when the output modes are detected and
thus destroyed. But this limitation shall not be part of the discussion here.

Coincidence in the experimental sense means that the electronic signal from the detectors
are generated (and essentially detected) within a small time window of each other. In a
continuous wave experiments the exact width setting of this time window is quite important
due to the possibility of creating photons at any given time and the need to ensure that
the photons that triggered the electronic signals temporally overlapped in the experiment.
Using a fs-pulsed laser alleviates this problem as the photons can only be emitted during the
time where the pulse is physically present in the pump crystal. As this is much smaller than
the temporal jitter of the detectors, coincidence windows of a total width just smaller than
the temporal separation between two laser pulses can be used to give reliable coincidence
readings. During the experiments in this thesis it was usually found though that a window
of about 1ns would be completely sufficient to detect the maximum number of coincidences,
but windows as wide as 11ns— Temporal pulse separation of the laser = 12.5ns— were used
while still differentiating between subsequent pulses.

Further the Avalanche photodetectors used during the experiment exhibit dark counts,
that is they trigger despite no photon being present. Typical rates for the detectors used
in this thesis were on the order of 100Hz, while the background reading due to stray light
would typically be on the order of 300 − 500Hz. Such artificial counts can of course pair
with events where the paired detector detected a photon and thus lead to a registered
coincidence event, even if i.e. the paired photon had been lost/rejected due to circuit failure.
(Of course a background count could also pair up with a background count on the other
detector, however the probability for such an event is about 5 orders of magnitude smaller
and can thus be safely ignored. Events where a coincidence event is registered due to a
background count are referred to as accidental coincidences. While these events are very few
(� 1Hz) and can typically be ignored, they can become a factor during very long detection
times on measurements where theoretically no counts are expected. As there is no way
of differentiating between these accidental coincidences and genuine ones, these rare events
contribute to the noise and error of the obtained experimental results.
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2.1.2 Pulsed parametric down-conversion

As PDC is such an inefficient process and one wants to have the highest signal rate for the
experiments to perform them in the fastest possible time, it is desirable to increase the rate
of coincidences. It hence looks very tempting to move away from continuous wave lasers to
pulsed systems to take advantage of the high peak powers as is done commonly for SHG and
other parametric wave-mixing processes. However as we saw during the quantum mechanical
treatment of PDC, the amplitude of coincidence events scales linearly in the pump field
amplitude. Thus moving to a pulsed source of the same pump power as a continuous source
does not increase the number of pairs of photons being created in one mode during PDC.
However the amplitude to create two pairs of photons scales quadratic with the pump field
thus moving from a continuous source to a pulsed source increases the proportion of events
where multiple pairs are created simultaneously.

While there is no gain in efficiency by utilising pulsed pump lasers for PDC when seeking
to generate only a pair of down-converted photons, there is one attribute of pulsed laser
systems do drastically improve the behaviour of parametric down-conversion. PDC occurs
purely at random, hence if one is pumping PDC with a continuous wave laser, the stimulated
PDC events are scattered randomly in time. In this sense, PDC is similar to radioactive
decay, where the probability of observing a decay is proportional to the number of available
atoms, but the occurrences are statistically distributed. The number of PDC events per time
unit is proportional to the pump power, hence the photon number, but the events are again
statistically scattered. This behaviour is obviously counter productive when more than one
pair of photons is required simultaneously. This problem can be alleviated with a pulsed
laser: Assuming the laser has the same average power as a the before mentioned continuous
wave laser, then the average rate of PDC-events remains the same, but the pulsing of the
laser now introduces a clock and down-conversion can only occur while the pump pulse is
present inside the non-linear crystal. By using a pulsed laser, the time span where the pump
pulse is present inside the crystal is given by the length of the crystal divided by the speed
of light inside the crystal. Furthermore femto-second lasers commonly have repetition rates
on the order of 100MHz with pulse length on the order of 100fs. The on-off ration is thus on
the order of 1 : 105, which equals the gain in probability of inciting multiple simultaneous
down-conversion events through the usage of a pulsed system, compared to a continuous
wave laser of equal average power.

The down-side of pulsed parametric down-conversion lies in the Energy-Time uncertainty
relation. A shorter, more well defined pulse length requires, following the Fourier-transform,
a spectrally broader pulse. Pulses on the sub-hundred femto-second scale correspond to
bandwidths on the order of ten nanometers. This extreme bandwidth creates a new prob-
lem for the non-classical interference: Revisiting our momentum conservation relation 2.4,
and remembering that the refractive index of a material continuously changes with the
wavelength, the solution for ~k changes across the pulse causing again distinguishability[48].
Effectively the coherence length of the pulsed light becomes so short, that the extra-ordinary
and the ordinary beam are no longer coherent with each other by the time they leave the
down-conversion crystal. The solution is to simply utilise spectral filters, narrower than the
spectral pulse width, artificially increasing the coherence length and restoring good visibil-
ity, however filtering means damping and thus loss. The application of these filters reduces
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the count rate and thereby partially undoes the benefit of increased simultaneous multi-pair
events gained by utilising the pulsed pump. The selected filter bandwidth thus represents
a compromise between count rate and maximum possible indistinguishability. In all our
experiments we applied interference filters centred at 820nm with a full wave half maximum
(FWHM) bandwidth of 3nm.

2.2 The experimental photon sources

2.2.1 Version 1: The naive approach

In the beginning Newport created the optical table. And the table was without form, and
void; and darkness was upon the face of the deep. And the spirit of Andrew moved upon the
face of the labs. And Andrew said, Let there be light: and we started setting up a Titanium
Sapphire (Ti:Sa) laser, and shortly thereafter, there was light4.

To be precise, the laser system used for all experiments was the Spectra-Physics Tsunami
laser with a 10W Millenia X frequency doubled Nd:YAG system, setup to emit approximately
70fs long pulses with a repetition rate of 82MHz and average output power that varied from
1.2 to 1.6W at the central wavelengths of 820nm. The variations where mainly caused by
slow deposition of dust on the cavity surfaces and misalignments with time. The mentioned
drift thus occurred on the scale of months. As the photon detectors that we utilised (Perkin-
Elmer SPCM-ARQ-14 silicon avalanche photodiodes) have their best response near 700nm,
we would like to have our photons near this wavelength. This requires us to first up-convert
our Ti:Sa laser beam before then generating down-converted photons at 820nm. We choose
820nm rather than a wavelength closer to the detection peak, as this is a secondary standard
wavelength in telecommunications, meaning some items are pre-fabricated and do not have
to be custom made. In the original setup shown in figure 2.1 we used type-I SHG in a
BBO-crystal to up-convert the light from the Ti:Sa.

After measuring the transverse beam-profile of the Ti:Sa output pulse, the optimal lens
was calculated [11] as

Lc = 2.9
πw2

0

λinc
for the optimal crystal length, with (2.11)

w0 =
fλ

wlensπ
, thus giving the optimal focal length as (2.12)

fopt =

√
Lcw2

lensπ

2.9λinc
(2.13)

Due to the elliptic shape of the pump beam and since the equation holds true only for
monochromatic light, which, given a bandwidth of 12nm at 65fs long pulses, is at best a poor
representation, the calculation was repeated for multiple extreme data sets returning values
in the range from 28mm to 48mm for the optimal focal length. The three available lenses in
this region were tested by trial and error, revealing the best conversion efficiency for the f=35

4My PhDs version of Genesis 1.1
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Figure 2.1: Photograph of the original second harmonic generation and down-conversion setup.
As can be seen from the bright spots, the ultra-fast prisms, have relatively high losses due to
scattering, thus also requiring extensive light shielding. Two of these prisms where needed to
maximise the separation on a short spatial distance. The translation stage on the down-conversion
crystal was used to translate the crystal whenever crystal damage due to the high UV intensities
occurred The SHG-BBO could not be optimally retroreflected as the reflected pulse propagated
back into the cavity of the Ti:Sa and partially depleted the inversion and thereby suppressed mode-
locking of the laser.

mm lens (η25.4mm = 17%, η35mm = 26%, η50mm = 22%), which was subseqquently used in this
setup. The non-linear crystal used in this first SHG source was a (8× 8× 2)mm3 β-barium
borate crystal (BBO) with its optic axis cut for type-I SHG at perpendicular incidence.

This very fact caused some obstruction to the optimal design. When perfectly retro-
reflecting the crystal to guarantee perpendicular incidence of the pump light, the crystal -
despite an anti-reflection coating at 820nm - would reflect sufficient amounts of light back
into the cavity, that the Ti:Sa would not maintain mode-locking. Ultra-short pulsed lasers,
such as the Ti:Sa fs-lasers, use a third order non-linear effect known as Kerr-lensing or
self-focusing to instigate mode-locking. In this case a random power fluctuation of the
spontaneous emission possesses enough power to excite a sufficiently strong focussing effect
in the Ti:Sa crystal. Due to this focusing the mode can pass without loss through a slit
or mode aperture and complete the round trip with total net amplification in the cavity.
Other modes that do not undergo sufficient self focussing will suffer too much loss at the
aperture to experience amplification during a round trip and are hence suppressed. The
propagating pulse will deplete the available inversion upon each round trip and suppresses
thereby the existence of any other pulses in the same cavity. As the pulse requires all modes
to be present inside the non-linear crystal simultaneously to generate enough Kerr-lensing,
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it also guarantees the mode-locking for femtosecond pulsing. The pulse that is reflected back
into the cavity from the SHG-crystal now depletes some of the available inversion and thus
stops the original pulse from acquiring enough amplification and consequently experiences
not enough self-focusing to maintain its unattenuated propagation inside the cavity, and the
laser will no longer remain mode-locked and pulsed operation.

There are two ways to counter this problem. The first is to build an optical diode
involving a polarising beamsplitter and a Faraday-rotator. The advantage of this design is
that subsequent optics can all be aligned perfectly with respect to the pump orientation,
and the isolation against back scatter is very high. The disadvantage, that this system
itself has a significant loss and decreases the available power. Furthermore, for a short
pulsed system, the crystal inside the Faraday-rotator creates a large amount of dispersion,
temporally lengthening the pulse and thus reducing the peak power — clearly undesired side
effects.

Option two is to not retro-reflect the SHG-crystal. In this case the optimal conversion
efficiency can never be achieved, but due to the tilt of the crystal the back-scatter of all optics
downstream from the crystal is deviated and thus does not couple back into the cavity. Due
to the ease of the installation, and absence of loss and dispersion, we chose option two.

After passing through the SHG crystal, the light is collimated with a second lens one
focal length (50mm) away. This second lens was part of a custom made UV-grade fused
silica lens kit from Thorlabs. The kit was custom AR coated to cover the range from 350
to 900nm with reflection minima at 410nm and 820nm. PDC is the degenerate case of four-
wave mixing, where the second input field is the vacuum. In the presence of a second pump
field, either sum frequency generation or difference-frequency generation would dominate. It
is therefore essential to dump all remaining unconverted (820nm) light from the Ti:Sa laser
and pump with only the up-converted pulse. Separation of the two light fields was achieved
with two dispersion compensating prisms followed by a UV-cold mirror, which reflects UV-
light at 45◦, while transmitting light above 720nm which also steered the pump pulse onto
the down-conversion crystal.

A (8 × 8 × 3)mm3 BBO crystal cut for type-II down-conversion was used in this first
setup. Commonly type-II down-conversion is associated with the emission of the two photons
along two cones, which can intersect. As one cone is of horizontal and the other of vertical
polarisation, as in the diagram in figure 2.2 this source design allows for the collection of
entangled photons from the intersecting regions. For the work of this thesis, polarisation
entanglement from the source is neither required nor desired. Tilting of the optic axis of the
crystal with respect to the pump vector varies the opening angle of the cones, without moving
the centre point of the individual cones, thus the cones can be fully collapsed, where the
inner boundaries of the rings touch each other and the emission spot has an approximately
Gaussian spatial intensity distribution in their cross-section, instead of the normal donut.
We chose this setup, as the down-converted signal was to be coupled into single mode fibre,
and a significant improvement in coupling efficiency was expected due to the Gaussian beam-
profile of the to be coupled light. A picture taken with a single photon sensitive CCD-camera
(MicroMax from Princeton Instruments) of the collapsed cone down-conversion is shown in
figure 2.3 confirms the collapsed cone emission. The improvement in coupling efficiency
was smaller than expected and did not compensate the loss in down-conversion efficiency
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Figure 2.2: Schematic of type-II parametric down-conversion. Black letters are momentum
vectors, green letters identify the polarisation of the respective beam. In the collapsed cone regime,
the two cones shrink to the point where the inner boundaries touch and the intensity profile is
approximately a Gaussian profile. The paired photons are emitted along the individual cones, at
points symmetric around the pump axis, in such a manner that the momentum is conserved. The
crystal in our experiment was a β-barium borate crystal.

Figure 2.3: False colour image of the type-II collapsed cone source, obtained with a single
photon sensitive CCD camera. The two bright spots are the actual emission cones. The three
lighter spot to the right (one large and two small ones) are reflection on the imaging lenses and
interference filter. The general background is caused by scattering. Exposure time of the image is
0.1s. The interference filter (IF) is centred at 820nm with a full width half-maximum bandwidth
of 3nm and is placed directly in front of the CCD. Prior to the IF, multiple slides of RG715,
a red glass from Schott, are placed to absorb the remaining pump photons. A UV cold mirror
directly after the PDC crystal was used to deflect the majority of pump light to a beam dump, as
it caused significant fluorescence in the RG715, of which some was at 820nm and thus created a
large background signal.

that arose from this unfavourable crystal alignment. There is an ideal angle at which the
momentum and energy conservation relationships are generally “easily” fulfilled and the
phase matching function is large. The collapsed cone regime however is the edge of the angle
range for which down-conversion can occur and thus the phase matching function is small
and vanishes if the optical axis is tilted even further from the ideal angle.

Once beam-like emission was confirmed with the CCD camera, free space single photon
detectors were set up to collect the down-converted modes. Once one detector for each mode
was successfully installed and coincident detection of photons was confirmed, the emission
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cone propagation directions were identified by the placement of irises, while monitoring the
down-conversion signal. A visible laser diode was then aligned to the beam path identified
by the irises and thereby to the mode of the down-converted light. The laser diode light was
steered onto the PDC-mode via two flipper mirrors, allowing easy alternation between normal
down-conversion operation or the laser diode alignment setup. Once the light from the diode
overlapped with the beam path of the down-conversion, a further two flipper mirrors were
used to steer the beam to free-space fibre launchers (Thorlabs KT110), to couple the down-
converted photons into single mode optical fibres, allowing convenient guiding of the PDC
photons to any experimental setup.

Despite the lower than expected efficiency and the lack of improvement on other down-
conversion arrangements known to yield better efficiencies [49],the source was used for the
experiments described in chapter 3.

2.2.2 Down-conversion Source Version 2.0: The V2

When one of the pump diodes for the Nd:YAG pump laser burned out, a complete realign-
ment of the source was required. Instead of reproducing the inefficient collapsed cone setup,
we grasped the opportunity to completely overhaul the source, and installed a new SHG
crystal remedying the retro-reflection problem. A detailed schematic diagram of the new
source design can be seen in figure 2.4 and is described in the section below.

The first significant change was swapping from type-II to type-I down-conversion as it
is intrinsically more efficient, as a different and higher non-linear coefficient for the crystal
is being exploited. Since the original PDC-crystal was cut with an angle of the optical
axis suitable for type-II, a new BBO-crystal cut for type-I down-conversion was installed.
In type-I, the two down-converted photons have the same polarisation. If they are further
degenerate (same wavelength) this leads to them being emitted on the same cone but on
opposite sides.

Simultaneously we trialled a new non-linear crystal for the SHG. Instead of using a BBO
crystal, a newly acquired Bismuth-Borate (BiBO)-crystal was used. This recently developed
crystal has a larger non-linearity, but has a narrower acceptance angle for the phase matching.
We tested this new crystal in comparison to another new BBO crystal, with both the BBO
and the BiBO cut at the appropriate angle for type-I SHG + 5◦. Cutting the crystals
away from ideal the ideal angle for SHG at perpendicular incidence causes the maximum
conversion efficiency to be achieved when the crystal front-face is tilted relative to the pump
beam axis. Thereby any back reflected light is as before reflected at an angle to the pump
beam and thus can not re-couple to the cavity of the Ti:Sa . Further, the lenses focusing onto
and collimating the light from the crystal were replaced with achromatic lenses rather than
the previously used bi-convex lenses, giving a better focus and thus a higher intensity for the
up-conversion. This intensity was further increased through realignment of the Ti:Sa laser
cavity after installation of the new pump diode bar, resulting in a much higher output power,
1.6W compared to 1.2 W previously. To gauge the difference in the conversion efficiency
of the two crystals, the new system with the achromatic lenses was trialled with both the
BiBO and the BBO crystal. We found optimal performance for the BBO crystal with the
50mm achromatic lens, resulting in a maximal output power of 620mW or an efficiency of
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Figure 2.4: General layout of the V2 source and subsequent sources, with altered crystals. The
figure shows the latest configuration, including the BiBO-PDC crystal. All crystals and lenses are
mounted in five-axis mounts to give maximum degrees of freedom for fine adjustment. The biconvex
lens is additionally mounted on a 50mm translation stage. The last two CVI mirrors are in high-
precision tilt mounts (Newport LP-1), to allow compensation of beam-steering down-stream, i.e.
due to cavity realignment, reducing amount of realignment required on the fibre couplers. The
BG39 is in a flipper mount. During normal operation it is down (off). While trying to get first
PDC signal fibre coupled, the BG39 is used to suppress 820nm scatter. The SHG BiBO crystal is
cut 5◦ away from ideal angle, to avoid back reflection, both crystals are dual AR coated and cut for
type-I operation. The BiBO up-conversion crystal prefers slightly longer pulses and a less tightly
focused beam for ideal SHG than BBO due to a smaller acceptance angle for the phase matching.
The fibre couplers are mounted on x-y translation stages to give access to all degrees of freedom
during alignment. Irises in the beam path are placed to reduce scatter, whereas the irises between
the prism mirrors and fibre couplers are used to allow coupling from a forward pass coupler to a
backward pass coupler. Distances for the fibre couplers are given as mirror to fibre tip, others as
front edge to front edge. All distances are given in mm.

nearly 40%. With the BiBO crystal and a 75mm achromatic lens we achieved a peak power
of 930mW, giving us a single-pass conversion efficiency of 58%. To obtain these results the
Ti:Sa laser was pushed to run on the edge of the stable mode-locking region producing slightly
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longer than optimal pulses, reducing the bandwidth and thereby easing the phase matching
condition for the BiBO crystal. This mode of operation led to the laser frequently dropping
out of mode-locking and an oscillation of output power. As the planned experiments required
long term stability (weeks rather than hours) maximum power was traded for stability by
using slightly shorter - spectrally broader - pulses. The narrow acceptance angle of the BiBO
crystal limited the conversion efficiency yielding output powers at 410nm of approximately
650− 750mW.

A further alternation in the pump design was the replacement of the dispersion compen-
sating prisms, which were found to be relatively lossy due to scattering and reflection of the
surfaces. Instead we used custom dichroic mirrors with a reflectivity above 99.5% at 410nm
and a high transmission (T ≥ 80%) at 820nm. A total of four of these harmonic separators
were needed before the intensity of residual 820nm the pump beam was below the measurable
threshold of our power-meter. Obviously measuring the remaining fundamental without the
second harmonic is non-trivial. By flipping the polarisation of the fundamental before the
SHG crystal from vertical to horizontal, the phase-matching condition is no longer fulfilled
and no up-conversion occurs. This allows us to measure an upper bound for the remainn
820nm light in the pump path, as now none of the power at 820nm was converted to 410nm.
We also measured the amount of leaking blue light to ensure that our dichroic mirrors were
within their specs. We grew suspicious as after the first mirror a blue beam was observable
on a white card. By splitting this spot from the overlaying fundamental with a prism we
concluded that the intensity was below the threshold of the power meter (less than 1mW),
and the mirrors where found to be well with in their specs.

As mentioned above, the down-conversion crystal was replaced with a BBO crystal of the
same dimensions, with the optic axes cut for type-I PDC at a 3◦ opening angle. The collection
of the down conversion photons was also altered. Instead of using a two-mirror setup to steer
the beam towards a fibre launcher, a platform with two front-surface metal coated prisms
was used to reflect two opposite parts of the down-conversion cone at right angles to the
pump beam, towards the fibre launchers. While not offering as many degrees of freedom
for the steering of the down-conversion photons, this setup proved significantly more stable
and required very little maintenance once configured. The pump beam was allowed to pass
between the two prisms, removing the need for spectral filtering at this stage and reducing the
scattered pump light. The fibre launchers were also swapped from the Thorlabs free-space
launchers to NewFocus (9131-FS-FC), which provided far superior stability, requiring only
fortnightly tweaking of the alignment compared to the daily adjustment for the Thorlabs
launchers.

2.2.3 The 4-photon source

The V2-Source described in the previous section was later upgraded to allow the collection of
four photons, as indicated in Figure 2.4. The pump pulse was retroreflected with a UV mirror
after passing through the crystal. Throughout the course of this thesis, the labelling of the
down-conversion modes will be in reference to the pump creation direction. The forward pass
shall here indicate the first pass through the crystal, whereas the backward pass or direction
shall indicate the pump pulse travelling back on its on path after reflection on the mirror
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after the non-linear crystal. In order to balance the down-conversion probabilities, the focus
of the 410nm pump pulse was set to be approximately at the retro-reflecting mirror, so that
both passes would have near identical local intensities, beam profiles and a similar range of
k-vectors.

To collect the down-conversion light generated in the backward pass, two further front
surface coated right-angled prisms were placed on the front side (towards the laser) of the
crystal. To ensure that photons with similar wavelength and momentum range would be
collected, we shone a diode laser through the collection fibre of the forward pass couplers.
As the forward couplers already collected coincident photons from the forward pass, the
light sent back through the fibre, impinged at the prescribed angle of 3◦ on the crystal and
overlapped with the pump light inside the crystal. It further ensured, that the light travels
again at 3◦ to the pump beam after exiting the crystal and thus identifies the suitable places
for the backward-pass prism mirrors and subsequently the fibre couplers which collect the
down-conversion photons. The backward fibre-couplers were than aligned to collect the light
from the 820nm diode laser injected by the forward couplers. Upon achieving high efficiency
coupling from the forward to the backward couplers we not only immediately had down-
conversion signal in the backwards pass, but also some coincidences. The success of this
alignment method not only saved many hours compared to the usual trial and error method,
but also minimised the the optimisation required to obtain the maximum collection efficiency
and coincidence rates.

2.2.4 Of flying ants and blue light

The 4-photon source proved to be a very stable and reliable setup, that is as long as we
managed to keep ants out of the lab. One day, the sun was out, the wind was low and the
air was dry, when the flying ants of a nearby colony said their last good-byes and flew of,
cruising through the air looking for queen ants to mate with. Some of them were misled and
made their way into our lab and while to the best of my knowledge I am sure that we have
no queen ants there, have no direct explanation for the why, ants seem to be attracted by
blue/UV light, as many ants kept running madly across optics that scattered blue light in
both the fs-setup and the Ar+ section of the lab. However, some ants are known to use the
polarisation of light to navigate, and ants like bees are capable of detecting light in the UV
range, thus I assume that the presence of vast amounts of strongly polarised light in the lab
led to their disorientation. However, this behaviour has only been proven with foraging ants
[50], and I do not know if it expands to flying ants. A further discovery of this day was, that
when ants choose to walk straight thorough half a Watt of blue, fs-pulsed laser light, they
seem to disappear. Closer inspection revealed that of course the ants did not just vanish as if
abducted by aliens, but rather left a smudged burned spot on whatever optic they choose to
walk across... In our case, this was both of our crystals and two of our harmonic separators.
None survived. Neither the ants nor the optics. I have recently discovered that a patent has
been issued in the US in 1997 [51] for a method based on applying pulsed UV-laser pulses
to fruit, as a non-invasive pesticide. Specifically it was found and proven that ants (among
other insects) tend to explode after exposure to only a few pulses of UV light.
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Once the replacement crystals and optics had arrived, and the ants had finished their mi-
gration either naturally or induced by ant-rid, we replaced the burned elements, we grabbed
the opportunity and, encouraged by the improved SHG efficiency with BiBO over BBO,
trialed a BiBO crystal for the down-conversion as well. We used the exact same setup as
previously and had the BiBO crystal cut so that the type-I PDC photons again would have a
3◦ opening angle outside of the crystal. The change proved to be a major success, increasing
our down-conversion rate approximately by a factor of 2. Apart from the new optics and
PDC-crystal, the setup remained unchanged.

Lessons learned: Ants are a vital part of the ecosystem but seem to yield only minimal
use in quantum information.

2.3 In fibre HOM-Interference: Green lights for the

Gates

While parametric down-conversion had been used for many different quantum optical schemes,
and non-classical interference had been proven numerous times, the emergence of ultra short
pulses had led to some difficulty arising from the duration of the pulses with respect to the
length of the crystals used to generate the down-converted photons. It was shown that if
the coherence time of the signal and idler photon becomes shorter than the pump pulse
duration that the observed non-classical interference degrades [52]. The coherence time can
be estimated by the dispersion of the group velocities in the non-linear medium, hence

tcoh =
( 1

ue
− 1

uo

)
Lcrystal, (2.14)

where tcoh is the coherence time, uo(e) is the group velocity of the (extra)ordinary beam and
Lcrystal is the length of the crystal. This distinguishability can be suppressed by spectral
filtering, as the maximally different group velocities become limited and the coherence time
is subsequently increased.

For our ultra-fast system we intended to use interference filters centred at 820nm with
a full width half maximum (FWHM) bandwidth of 3nm. While such a filter should suffice
in order to reestablish sufficient visibility of the non-classical interference for the desired
quantum gates, a proof-of-principle experiment was conducted to measure the non-classical
interference in a 2x2 fibre-port beamsplitter. This is a beamsplitter with two fibres each as in
and output, where the two fibres have been melted (fused) together in the interaction region
to achieve an effective polarisation-independent beamsplitter with reflectivity η = 0.5.

I conducted this test with the original collapsed cone source and a fused-fibre beam-
splitter obtained from JDS-Uniphase. As it is essential for the photons to be completely
indistinguishable, it is necessary for both photons to have the same polarisation in the in-
teraction region. As the source was a type-II source, the emerging down-converted photons
have orthogonal polarisations. However as both photons prior to the interaction region have
to first pass through about 2m of single mode optical fibre which does not preserve the po-
larisation, the input polarisation is not the defining element for the polarisation state at the
interaction region. It does not suffice to simply inject two photons of the same polarisation
into the two fibres.
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To experimentally ensure that both photons have the same polarisation in the interaction
region I applied the following procedure: I measured the horizontal polarisation intensity at
one of the outputs, while blocking one of the inputs. Using fibre polarisation controllers (aka
bat-ears), I rotated the polarisation of the active input before the interaction region, till the
output was purely horizontally polarised, indicated by a maximum intensity after a Glan-
Taylor polarising beamsplitter cube in the horizontal port. This procedure was then repeated
with the other input, while blocking the first input. It is essential to continue to measure
on the same fibre output-port, as now the fibre of this output is a common path. Thus any
polarisation rotation occurring on a photon from one input in this output fibre also occurs
on the photons from the other input. Hence if both photons have the same polarisation at
the common output, they must also have the same polarisation in the interaction region,
fulfilling this precondition for indistinguishability.

A further requirement is that both wave-packets must temporally overlap in the inter-
action region. To ensure this, one fibre coupler was mounted on a motorised translation
stage allowing a slow gradual scan of the free-space path length prior to this input of the
fibre beamsplitter, altering the arrival time of photons coming thorough this port. While
this appears to be a straightforward “turn the handle and it works” method, measuring the
actual length of the individual fibre pigtails is strongly suggested to ensure that a sufficient
range of free-space path length can be scanned. We observed fibre length deviations on 2m
fibres as large as 148mm, or 7.4%. Once the correct delay was found, the expected HOM-dip
was observed and is shown in Fig. 2.5. The visibility of the dip is 94.1±0.4% and thus close
to the optimal 100%. Though not measured at the time, the degradation is likely a com-
bination of spectral mode mismatch, higher-order photon terms (see section 4.4), and also
in part due to the different dispersion inside the non-linear crystal for the e and o-beams
even within the filter bandwidth, as recently pointed out to me by Thomas Jennewein from
the University of Vienna. However the visibility is high and gives us a green light (for our
infrared photons) to proceed with the implementation of an entangling quantum gates with
photons from femtosecond pulsed down-conversion.
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Figure 2.5: Hong-Ou-Mandel interference of photons generated in type-II parametric down-
conversion with a femtosecond pulsed laser in a fused fibre beamsplitter. Error bars for the singles
rates are smaller than the symbol-size. The visibility as derived from the fitted Gaussian dip is
94.1±0.4%. The background rate (with no light input into the fibres) is ≈ 30 per 5s, and has not
been corrected for in the visibility calculation.



3
A robust and simple controlled-Sign gate

This chapter discusses the first implementation of a two-qubit entangling gate with a novel
piece of optics: the partially polarising beamsplitter (PPBS). This type of cube beamsplitter
utilises a specifically engineered dielectric stack between two right-angle prisms. The stack
is designed to be perfectly reflective for the vertical polarisation while reflecting (ideally)
only 1/3 of the horizontal component. As only the horizontal polarisation mode of each
qubit can thus interfere non-classically, the PPBS makes classical interferometers for mode
separation of the orthogonal polarisations redundant. We implemented controlled-sign gates
with both a pulsed down-conversion source and a continuous-wave source and compared
their performance to investigate any potential degradation in gate performance due to the
application of spectrally broad and temporally short pump pulses . We further analysed the
pulsed gate both with free-space detection of the qubits after the gate and with single-mode
fibre coupled detectors, where the single-mode fibres act as strong spatial filters. It was
found that there is no significant degradation of the gate performance due to the utilisation
of photons generated through pulsed PDC rather than continuously pumped PDC. In actual
fact the pulsed gate outperformed the continuously pumped one slightly. Additionally it
was discovered that spatial filtering of the output modes of the gate with single mode fibres
improves the gate performance while only slightly reducing the count rate.

Work on the free-space pulsed gate was conducted by myself with assistance from Geoff
Pryde and Jeremy O’Brien. The subsequent single-mode fibre coupled version was imple-
mented and analysed by myself in close co-operation with Robert Prevedel and Kevin Resch.
The continuous wave gate was investigated by Nathan Langford with help from Geoff Pryde
and Jeremy O’Brien. Some data analyses was handled by all involved members, the fi-
nal process tomographic reconstruction and rotational optimisation was the work of Alexei
Gilchrist and Nathan Langford. Our work was published as a triple back-to-back publication
in Physics Review Letters [53] together with groups from Munich [54] and Hokkaido [55] who
performed similar experiments independently. Our publications is included at the end of the

45
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chapter and replaces the appropriate subsection in this chapter detailing the experiments
described in the paper. The remaining sections of this chapter give underlying details and
insights additional to those published in the paper.

3.1 A brief history of optical two-qubit entangling gates

After the publication of the seminal paper by Knill, Laflamme and Milburn in 2001 [12]
circumventing the need for very large non-linearities in optical quantum computing, the path
towards a two-qubit entangling optical gate was clear. The difficulty for polarisation encoded
photonic qubits, lay in the need to let the individual logic modes interact independently of
the other logic mode of the qubits, i.e. have non-classical interference between the horizontal
components of two photons, but not their vertical components. A gate design for this was
suggested in [34], which first spatially separated the two polarisation modes with classic
interferometers and later, after the non-classical interaction, recombine them. This required
a classical interferometer for the separation and recombination of the polarisation modes for
both qubits, and non-classical interference between two of these modes. A schematic of this
kind of gate design is included as Figure 1a) in the publication attached at the end of this
chapter. Stabilising two classic interferometers and a non-classical interference is a difficult
task. The first implementations using the common interferometers were too unstable to yield
convincing and conclusive results without active locking of the classical interferometers. It
took till 2003 and the re-discovery of a nearly forgotten intrinsically stable interferometer,
with which a successful implementation was reported [56]. This controlled-NOT gate used
a Jamin-Lebedeff interferometer comprised of calcite beam-displacers, making it insensitive
to any kind of translation of the elements in the interferometer. Nevertheless the gate
performance was still limited by the visibility of the classical interference. It had been
noted by Geoff Pryde that if an element existed which would have the desired reflectivities
for the different polarisations, that this would be a significant simplification and would yield
potentially significantly higher gate fidelities. Other implementations of two-qubit logic gates
were also published during this time [57, 58], which do not require classic interferometers,
but do require entanglement between each of the interacting photons and an additional
ancilla photon. Due to this inherent significant difference in the designs, these gates and
their implementations are not discussed in this thesis.

3.2 Building a gate with partially polarising beamsplit-

ters

In 2004 our research group obtained the first sets of such partially polarising beamsplitters
from two different suppliers. One of the sets was designed to operate at 702.2nm, the wave-
length of down-converted photons from PDC crystals pumped by an argon-ion-laser (Ar+),
and was obtained from Asahi (Japan). The second set, obtained from Special Optics (USA),
was designed for operation at 820nm, for the photons generated by the fs-pulsed Ti:Sa sys-
tem. This set of partially polarising beamsplitters (PPBS) turned out to have reflectivities
far from the specified values. For ideal gate operation it is required to have perfect reflection
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for vertically polarised photons and 1/3 reflectivity for horizontally polarised photons. The
obtained PPBS had reflectivities of ηV =0.99±0.01 and ηH=0.28±0.01. This deviation lim-
ited the visibility of the non-classical interference to approximately Videal = 67% as opposed
to Videal = 80% for the ideal case and thereby also limited the accuracy of the gate action.
While promising, the original set of data was not of the desired quality and a redesign of the
gate was conducted to include single mode fibres to collect the photons after the gate. Single
mode fibres act as spatial filters. As the photons were injected into the gate by single mode
fibres as well, this allowed very accurate control of the spatial modes active in the gate, sim-
ply by optimising the coupling from the input to the output couplers. Photons that were not
coupled into the detectors could not trigger a detection event, thus not incite a coincident
count. As far as the gate is concerned they never existed. This high degree of spatial filtering
thus selected only an idealised Gaussian mode that coupled to the single mode fibre from all
possible spatial modes in the gate. This introduced a much more stringent limitation on the
detected spatial mode as the injection through single mode fibres and while this inevitably
reduced the count rate, it led to a much improved visibility of the non-classical interference
and a subsequently much improved gate operation. The data published in the subsequent
paper was acquired with the setup using the single mode fibres acting as spatial filters, and
worked of the revamped source described in section 2.2.2. As the gate requires no longer
any spatial separation of the logic modes of the qubits, the number of optical elements in
the gate is drastically reduced. A schematic of this novel gate design is displayed as figure
1b) in the publication at the end of this chapter. The only necessary element is the PPBS
for the non-classical interference, however in order to balance the probabilities for a modes
in the gate, half-waveplates after the interaction PPBS flip the logic modes i.e. |H〉 → |V 〉
and vice versa prior to another set of PPBSs, one in each arm of the gate. These PPBSs act
as the dump ports where the previously unattenuated |V 〉 mode, which has been flipped to
|H〉 now experiences loss, but as there is no other photon injected in the other input port of
this PPBS that our initial photon could non-classically interfere with at this beamsplitter,
it does not receive a phase shift.

The deviation of the splitting ratio of the PPBS was deemed intolerable and was clearly
limiting the results, hence a new set of PPBSs was ordered from the company that provided
the original set for the Ar+-laser, as this set was ideal within the measurement accuracy. The
new set proved significantly better, but was still not ideal with reflectivities of ηV =0.99±0.01
and ηH=0.35±0.01. As these beamsplitters were not delivered till October 2005, they were
installed in the gate after publication of our paper which is attached at the end of this
chapter. The experiments in chapter 4 and onwards were all conducted with the PPBS-set
obtained from Asahi in conjunction with post gate single mode fibre coupling as spatial
filters.

3.2.1 Towards the implementation

After constructing the gate as shown in the paper, the non-classical interference had to be
established. For this measurement, the polarisation of the input states was set to horizontal,
allowing interaction of the photons at the PPBS. The scan of the interference visibility just
before the collection of the data in the paper is shown in Fig. 3.1. As the PPBSs were found
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Figure 3.1: Hong-Ou-Mandel interference of the horizontally polarised photons on the central
PPBS of the controlled-Z gate taken just prior to the data collection for the process reconstruction.
Error bars for the singles rates are smaller than the symbol-size and the visibility as derived from
the fitted Gaussian dip is 61.1±1.2%, yielding a relative visibility of 91%. Missing points are caused
by communication failure where the data from the counter is not received by the computer.

to be leaking some vertically polarised photons, we also took a interference measurement with
the vertical polarisation, which is shown in Fig. 3.2, however no conclusive dip was observed
and it was hence concluded that no significant interference of the vertically polarised photons
occurred.

In the ideal case the maximal visibility is limited by the reflectivity of the beamsplitters
to Videal = 80% for horizontally polarised photons. With ηH = 0.28 this limit drops to
Videal = 67%. Rather than quoting the total visibility, it becomes sensible to quote the
measured value relative to the maximal possible or ideal value, thus

Vrel =
Vmeas
Videal

, (3.1)

which leads to a much better appreciation of the quality of the non-classical interference
achieved. For the published controlled-Z gate implementation, the relative visibility achieved
with spatial filtering with single mode fibres and the spectral filtering with the interference
filters with ∆λFWHM=3nm was 91%. At the time the imperfections were attributed chiefly to
remaining mode-mismatch, spatial or spectral. As the results obtained with the pulsed laser
system equalled the previous best demonstration of a photonic entangling two-qubit gate
and surpassed that of the continuous wave system, spectral mode mismatch was thought to
be insignificant.

The gaps in the data for the HOM-dips are artefacts of the LabView acquisition program
with the Ortec counting modules. The program would send the desired integration time to
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Figure 3.2: Searching for Hong-Ou-Mandel interference of the vertically polarised photons in
the PPBS-CZ gate. There is no observable dip. The drop of coincidences towards the middle of the
graph is completely explained by the temporal fluctuation of the singles rates, as can be seen by the
brown curve showing the coincidence rate divided by the singles rates and re-scaled to approximate
count rate level. The expected dip position is the same as in the HH case shown in Figure 3.1, at
7.277mm. Clearly there is no significant drop in coincidence count rate.

the counter, which would automatically count for the desired time period and then send the
counts back to the computer via GPIB and a GPIB/Ethernet converter. Upon reception
of the number of counts, these would be added to a file with the current time stamp. Due
to occasional drop outs of the Ethernet connection some data points would not be properly
written, and the measured counts for that interval lost. As the translation stage operated
independently, it would continue to run at a constant speed. The position for the data
points is calculated from the elapsed time, multiplied by the known speed of the stage
and its starting point. Therefore the counts in the gaps are due to the data lost during
the communication of the counting card to the LabView program. This behaviour initially
distorted the data acquisition of the state tomographies as well, an additional loop was
added in the tomography program to confirm the receipt of data, else the point would be
retaken, until the data was received. Therefore there is no effect on the state tomography
data from this undesired feature. Such an additional loop in the program was not possible
for the scanning of the HOM-dip, as the program did not control the translation stage (It
did control the waveplates for the tomographies though).

The acquisition of a new controller and counting card during the extension of the source
to the four photon source led to a completely new LabView acquisition program for all data
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acquisitions that did contain appropriate steps to ensure the correct reception and logging
of all data.

3.3 The effect of spatial filtering

The paper (shown at the end of this chapter) emphasises on the difference between the
pulsed/cw implementation and the application of the gate as a Bell-state discriminator and
as the effect of the spatial filtering, while a major result is barely discussed in the paper due
to the space confinement, hence I will give more detailed results in this section.

3.3.1 State Tomographies

To obtain the most detailed analyses of the gate action, we conducted full process tomography
on the gate. However, as pointed out in section 1.4.3, state tomographies form a subset of
the data taken for process tomography. The setup of our gate (shown in the paper as
Fig. 1a) consisted of motorised rotation mounts for the analyses waveplates and manual
input waveplates, which allowed the automation of the state tomographies. For complete
process tomography a total of 256 measurements (Sets of 4x4 input states (H, V, D, R)x(H,
V, D, R) while measuring sets of 4x4 output states for each input state) is the minimal set
required to completely characterise the process. It has been shown in the past, that taking
an over-complete set of 576 measurements (16 input × 36 output), drastically improved the
reliability and quality of the results [10], as temporal fluctuations of count rates can be
normalised out in individually sets of positive operator measurements (POVM) (i.e. HH,
HV, VH, VV or DR, DL, AR, AL), rather than having a single normalisation for the entire
data set per input state. We thus used the set {H, V,D,R} ⊗ {H,V,D,R} as input states
(i.e. HH, HV, HD, HR, VH, VV, ..., RR) while taking the complete set of output states
{H,V,D,A,R, L}⊗{H,V,D,A,R, L} (i.e. HH, HV, HD, HA, HR, HL, VH, VV, ..., RR, RL).
State reconstruction were handled by Mathematica and Matlab routines. The Mathematica
routine was written by Kevin Resch, while the Matlab program was developed by Nathan
Langford and was part of his thesis [10].

While the setup of the gate remained unchanged, there were two different implementation
of the CZ gate with the pulsed source. During the original tomography run no spatial filtering
was applied after the gate . The spatial alignment was optimised on a best effort basis by
spatially overlapping the outputs of the single mode fibres that injected the photons into the
gate. For this a visible laser diode was shone through the input fibre. Overlapping of the two
spots (one from each input coupler) at the interfering PPBS and then adjusting the angle till
they also overlapped also after letting the beams propagate to the wall (approximately 1.5m
from the PPBS) was used to give a first rough alignment of the two beams. As we used light
from the same diode laser in both input ports to the gate as we split the diode light with
a non-polarising beamsplitter prior to fibre coupling it, we could then search for classical
interference of the spots after the PPBS. The classical interference is an indicator that good
transverse spatial and momentum overlap between the two input ports was achieved. Once
breathing of the interference modes (slow changes from light to dark spots at the centre of
the beam due to thermal drift of the couplers) was observed, we then swapped the visible
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laser diode for a laser diode at 820nm, the wavelength of the down converted photons and
repeated optimised the magnitude of the classical interference while measuring the power of
the beam in one arm after the PPBS. The IR diode was mainly used to optimise the focusing
coming out of the single mode fibres and into the gate. The detectors used during this
original process tomography were free-space single photon detectors with a interference filter
(820 ± 1.5nm) and a 35mm achromatic lens mounted directly in front of the detectors. To
allow coupling optimisation the detectors were placed on x-y-z-translation stages. However
these detectors could not be aligned to only collect light from the ideal spatial mode from
the gate, but would also collect a much larger angle and thus more background photons
and more importantly scattered and rejected photons which never went through the gate.
While the probability for such events was minimised by alignment and shielding, it remained
non-zero. The PDC photons for the initial investigation were generated by the naive source
(section 2.2.1).

The final and published tomography was conducted using the V2Source (section 2.2.2),
and the gate after it underwent a major reconstruction. This comprised compacting it in size,
rerouting light paths to have a better spatial arrangement, minimising scatter onto different
detectors and the installation of single mode fibres and fibre coupled detectors after the gate
to perform stringent spatial filtering. The latter was by far the main improvement, as verified
by my colleagues when they upgraded the cw-gate to spatial filtering as well. This new
detection technique also altered the alignment method. As the single mode detection fibres
could be unplugged from the single photon detector, we could measure the power coupled
into and guided by the single mode fibre with a powermeter while using the IR diode of above
as input through our input couplers. This method is significantly more reliable as it allows
a direct measurement of the achieved coupling and thus alignment quality. It was found to
give best results when the fibre of the first detector (either detector) would be optimised with
respect to the stationary input, i.e. the one not translated during HOM-scans, followed by
optimisation of the second input to the first detector and finally the last detector while using
both inputs simultaneously. As this alignment procedure could use the IR diode throughout
the entire alignment process, alternation of the distance of the coupling lenses in the fibre
couplers when switching beween the IR diode and the visible diode was no longer necessary,
making it by far easier to achieve identical spot sizes at the interference point. The achieved
relative visibility for the HOM-interefernce subsequently rose from 87± 1%, to 91± 1%.

This improvement is also evident in the individual data taken for the two gates during
the course of the process tomography. The individual state tomography pictures are shown
for comparison in the Figures 3.3-3.6 for the original gate implementation without the single
mode fibres as filters, and Figures 3.7-3.10 with the fitering. Both show the uncorrected
state, where the phase shift induced by the beamsplitter has not been accounted for in the
final analysis. The purity, linear entropy and the tangle of the individual states are also
shown in Table 3.1 & 3.2. The improvement of the fibre filtered gate is eminently clear in
every measure. The purity ranges from 99% to 80% for the spatially filtered gate, while the
original gate achieves purities in the range from again 99% but dropping as low as 68%. Not
surprisingly the linear entropy also shoots up reaching a maximal value of 42% unfiltered
compared to 26% with the single mode fibres as filters. The maximal tangle also climbed
to new heights reaching consistantly over 60% for all four states (DD, DR, RD, RR) that
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should produce a maximally entangled output states, with a maximum of 67% (DD). Prior
to the gate upgrade, the tangles ranged from 41% to 56%.

Input Linear
State Purity Entropy Tangle

HH 0.954± 0.005 0.061± 0.006 0.0005± 0.0005
HV 0.951± 0.010 0.065± 0.014 0.006± 0.004
HD 0.825± 0.013 0.233± 0.018 0.003± 0.002
HR 0.737± 0.013 0.351± 0.017 0.001± 0.001
VH 0.935± 0.013 0.086± 0.017 0.006± 0.004
VV 0.944± 0.012 0.075± 0.016 0.003± 0.002
VD 0.976± 0.008 0.032± 0.011 0.004± 0.003
VR 0.992± 0.005 0.010± 0.007 0.002± 0.002
DH 0.788± 0.013 0.283± 0.017 0.0006± 0.0012
DV 0.962± 0.011 0.051± 0.015 0.016± 0.006
DD 0.780± 0.018 0.29± 0.02 0.56± 0.04
DR 0.693± 0.018 0.41± 0.02 0.46± 0.03
RH 0.829± 0.013 0.229± 0.018 0.0004± 0.0011
RV 0.936± 0.013 0.086± 0.017 0.021± 0.007
RD 0.683± 0.015 0.42± 0.02 0.41± 0.03
RR 0.721± 0.015 0.37± 0.02 0.53± 0.03

Table 3.1: Purity, Linear Entropy and Tangle of the individual state tomographies conducted
during for the process tomography of the CZ gate implemented with PPBSs, without the
spatial filtering of the output modes. See text for details.
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Input Linear
State Purity Entropy Tangle

HH 0.991± 0.001 0.0127± 0.001 0.0001± 0.0001
HV 0.805± 0.004 0.2600± 0.005 0.0061± 0.0014
HD 0.917± 0.004 0.1110± 0.005 0.0012± 0.0004
HR 0.868± 0.004 0.1762± 0.005 0.0001± 0.0001
VH 0.883± 0.004 0.1562± 0.005 0.0042± 0.0012
VV 0.973± 0.005 0.0354± 0.006 0.0001± 0.0001
VD 0.943± 0.003 0.0765± 0.004 0.0016± 0.0006
VR 0.945± 0.003 0.0732± 0.003 0.0011± 0.0004
DH 0.891± 0.004 0.1451± 0.005 0.0012± 0.0005
DV 0.876± 0.005 0.1656± 0.006 0.0065± 0.0014
DD 0.836± 0.005 0.2183± 0.006 0.667± 0.010
DR 0.802± 0.004 0.2636± 0.006 0.619± 0.009
RH 0.864± 0.004 0.1819± 0.006 0.0002± 0.0002
RV 0.872± 0.005 0.1702± 0.007 0.023± 0.003
RD 0.869± 0.005 0.1741± 0.007 0.675± 0.008
RR 0.834± 0.004 0.2214± 0.006 0.648± 0.010

Table 3.2: Purity, Linear Entropy and Tangle of the individual state tomographies conducted
during for the process tomography of the CZ gate implemented with PPBSs, after the source
had been upgraded and single mode fibres and single mode fibre-coupled detectors were used
for spatial filtering of the output modes. Significant increases in purity and tangle and a
decrease in linear entropy for superposition input states were obtained. The reduction of the
error magnitude is not a result of the improved gate alignment, but an effect of the brighter
source leading to larger count numbers and thus better statistics.
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Figure 3.3: State tomographies for the input states HH,HV,HD and HR into the CZ-Gate using
free-space detectors and no spatial filtering of the output modes. No compensation was made for
the phase shift imposed by the PPBS or the additional bit flip imposed by the gate. The shift of
the coherences from real to imaginary and vice versa in the HD and HR case are chiefly caused by
the phase-shift of the PPBS. The occurrence of coherences in the HH and HV state is not caused
by the PPBS and is discussed at a later stage (Section 4.4).
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Figure 3.4: State tomographies for the input states VH,VV,VD and VR into the CZ-Gate using
free-space detectors and no spatial filtering of the output modes. No compensation was made for
the phase shift imposed by the PPBS or the additional bit flip imposed by the gate.
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Figure 3.5: State tomographies for the input states DH,DV,DD and DR into the CZ-Gate using
free-space detectors and no spatial filtering of the output modes. No compensation was made for
the phase shift imposed by the PPBS or the additional bit flip imposed by the gate. The output
for the DD and DR states are expected to be maximally entangled.
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Figure 3.6: State tomographies for the input states RH,RV,RD and RR into the CZ-Gate using
free-space detectors and no spatial filtering of the output modes. No compensation was made for
the phase shift imposed by the PPBS or the additional bit flip imposed by the gate. Maximally
entangled outputs are expected for the RD and RR state are



58 A robust and simple controlled-Sign gate

HH

HV

HD

HR

Figure 3.7: State tomographies for the CZ-Gate using single mode fibre coupled detectors for
spatial filtering of the output modes. Input states are HH,HV,HD and HR. No compensation was
made for the phase shift imposed by the PPBS or the additional bit flip imposed by the gate. In
comparison to the unfiltered data it becomes immediately obvious that the states are in general
of higher quality. Especially in the logically pure states HH and HV the lower rate of undesired
populations and coherences is evident.
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Figure 3.8: State tomographies for the CZ-Gate using single mode fibre coupled detectors for
spatial filtering of the output modes. Input states are VH,VV,VD and VR. No compensation was
made for the phase shift imposed by the PPBS or the additional bit flip imposed by the gate.
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Figure 3.9: State tomographies for the CZ-Gate using single mode fibre coupled detectors for
spatial filtering of the output modes. Input states are DH,DV,DD and DR. No compensation was
made for the phase shift imposed by the PPBS or the additional bit flip imposed by the gate. Both
the DD and DR state achieve tangles well above the 60% mark.
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Figure 3.10: State tomographies for the CZ-Gate using single mode fibre coupled detectors for
spatial filtering of the output modes. Input states are RH,RV,RD and RR. No compensation was
made for the phase shift imposed by the PPBS or the additional bit flip imposed by the gate. Both
the RD and RR state show significant tangle, with the DR state yielding the highest tangle of all
states during this chapter at 67.5%.
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3.3.2 Process Tomographies

As we can see from the tables and state density matrices, the quality of the reconstructed
output states improved significantly due to the spatial filtering. Naturally this also improves
the quality of the process that the gate implemented. For the process tomography conducted
with free space detectors and thus without the additional spatial filtering, we find a process
fidelity of Fp = 76.2±0.6% which equates to an average gate fidelity of F = 81.0±0.5%, where
as after the introduction of the single mode fibre coupling at the gate output, the process
fidelity rose to Fp = 84.0 ± 0.1% with the average gate fidelity reaching F = 87.2 ± 0.1%.
The reconstructed χ-matrices are shown in figures 3.11 and 3.12 for the gate without and
with the spatial filtering respectively. While the difference might be hard to spot with the
naked eye, the (desired) coherences of the processes in the matrix with the spatial filtering
in place are significantly higher and closer to the ideal value of 0.25.

As briefly mentioned in our publication, we observed fixed rotations on our single qubits.
The nature of the rotation meant that in all states where the output states where not logic
states (H or V), the coherences where shifted. The four states seeking to create a maximally
entangled state (DD, DR, RD, RR Figures 3.5,3.6,3.9,3.10) subsequently suffer the most.
After an extensive analyses of our gate with single qubit tomographies conducted at various
points in our circuit, we concluded that the phase shifts were caused by the PPBSs. As
the PPBSs consisted of two glued together right angle prisms, with the dielectric stacks
in the centre, we were striking the dielectric stack at an angle of 45◦, which is known to
potentially cause such phaseshifts. As these rotations are a fixed phase shift between the
horizontal and vertical component of our qubits, only superposition states are affected. There
are two possible methods to eradicate the effect of theses phase shifts. The first one is by
installing a equal and opposite phase shift in the gate before the analyser i.e. waveplate
at its optic axis, however tilted with respect to the beam. The incorporated phase shift
could then be adjusted until single qubit tomography on a superposition state no longer
indicates a phase shift. Option two is not altering the physical implementation of the gate
but optimising the measured and reconstructed two-qubit state by an optimal single-qubit
rotation mathematically. In principle these methods are identical as both find a single qubit
rotation that optimises the state. As our measurements were completed by the time we
had pinpointed the problem we chose to use the mathematical optimisation. We used the
average gate fidelity (F ) as our optimisation parameter. While these optimisations did
increase the gate measures (as stated in the paper), we chose to display the reconstructed
states and processes without these optimisations for our publication and following suit the
reconstructed states and processes in this chapter are also derived without the correction of
the undesired rotations induced by the PPBS.

A further major difference of the two process tomographies (with and without the spatial
filtering) was the individual duration. While both tomographies consisted of 576 measure-
ments, the original tomography was conducted with 20 second integration time per point,
thus consuming a total of 192 minutes or 3 hours and 12 minutes excluding the time it took
to alter the waveplate angles in between measurements. It was calculated that the motorised
changing of waveplates for the state analyses took on average 5s, adding a further 48 min-
utes to the total duration. Manually altering the input state and readying the acquisition
system for the next input state, takes on average about 3 minutes each, bringing the total
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duration to 4 hours and 45 minutes. The total time overhead, the time during which no data
was acquired thus totals to nearly one and a half hours. After the source improvement the
count rate was so drastically increased, that the per point integration time was reduced to
10 seconds, thus halving the active acquisition time to just 1 hour and 36 minutes. An even
shorter acquisition time would have been feasible, but due to the unalterable time overhead
through waveplate rotations, we chose to not reduce the acquisition time any further and
rather improve the counting statistics, leading to the much improved errors as can be seen
in Table 3.2.

3.3.3 Noise sources for the PPBS-CZ gate

While the found process fidelity was the highest recorded for linear optical quantum com-
puting to this point, it still leaves the question where the noise comes from and what can
be done to improve the gate operation. Historically imperfect visibility of the non-classical
interference, and hence non-ideal gate operation, has been chiefly attributed to poor mode
matching, bee this temporal spatial or any other mode. In this experiment however the
spatial, temporal, spectral and polarisation modes are very well defined, raising the question
what else can contribute to the non-ideal gate operation. This question will be addressed
and answered in detail in the following chapters (Chapters ??). As a quick preview it shall
be mentioned here, that the accidental generation of multiple photons in the same spatio-
temporal mode, the detector inefficiency and the non-ideal beamsplitter reflectivity are now
the leading sources of process imperfection.

3.4 Conclusions from this experiment

• We implemented the first optical CZ-gate free of classical interferometers by using
partially polarising beamsplitters.

• We demonstrated the gate with both a pulsed PDC source and a continuous wave
source, finding no degradation of the gate performance due to the pulsed source. In
fact, the results obtained with the pulsed source surpassed those from the cw-source.

• We implemented spatial filtering after the gate with single mode fibres. This increased
all measures of the gate performance, Most notably the process fidelity rose by 7.8% to
84.0%, equalling the highest gate fidelity achieved in an optical gate up to this point.
An investigation into the sources of the imperfect gate operation and the sources of
the noise is conducted and presented in Chapters ??.

• Single qubit rotations due to the dielectric stack of the PPBS were identified and
compensated for mathematically.

• Future outlook: The PPBS gate has been shown to operate at least as accurately
as gates using classical interferometers. This is especially noteworthy as the utilised
PPBSs were non-ideal with respect to their reflectivities. More accurate PPBSs will
lead to a further improvement to the gate performance. The fact that no classical
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interferometers are needed makes the realisation of these type of gates much more fea-
sible with view to a large scale implementation. Nevertheless these gates still only have
a success probability of 1/9 and will require a quantum non-demolition measurement
to become scalable.
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Imaginary Part

Real Part

Figure 3.11: Real and imaginary part of the χ-matrix for the original CZ-Gate implementation
without the spatial filtering, shown in the Pauli basis. The ideal gate operation (shown in the
paper), should consist of equal populations in the II,IZ,ZI and ZZ element and coherences between
them.
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Real Part

Imaginary Part

Figure 3.12: Real and imaginary part of the χ-matrix for the CZ-Gate in the implementation
with the single mode fibres as spatial filters shown in the Pauli basis. The ideal gate operation
(shown in the paper), should consist of equal populations in the II,IZ,ZI and ZZ element and
coherences between them.
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3.4.1 The paper — Demonstration of a simple entangling optical
gate and its use in Bell-state analysis
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4
Controlled-Sign gate between independent

photons

In this chapter of the thesis I discuss methods for increasing the number of qubits and thus
number of photons used in quantum circuits. This involves both a slight redesign of the gate
and a source of more than two simultaneous photons. While the investigation of a many (i.e.
more than two) qubit entangling gate fails initially, this leads to the intensive investigation of
behaviour of a controlled-sign gate with independently generated photons. We do this both
experimentally and by deriving a full model of the gate with all of its parameters determined
from the experimental setup. We find that our model describes the experiment with very
high accuracy and allows a detailed analyses of the magnitude and effect of the observed
noise sources. Surprisingly, undesired multi-photon emission is identified as the leading noise
source, degrading the process fidelity by 15.8%.

Kevin Resch, Geoff Pryde and Jeremy O’Brien assisted me in the experimental realisation
of the multi-photon gates. Kevin Resch also assisted in the measurement and analyses of
the independent photon gate and in the debugging of the MathematicaTMmodel for the
independent gate. Alexei Gilchrest lead the reconstruction and mathematical optimisation
of the process tomographies and also helped me debug my Mathematica code and provided
me with an important insight in some of Mathematica’s functions and flaws.

4.1 Scaling up the gates

The Di Vincenzo-criteria for quantum computing demand that to be suitable, an architecture
should be scalable, meaning that without large overheads the number of utilised qubits can be
increased indefinitely. The issue of scalability can not be answered positively with certainty
in any architecture yet. In linear optical quantum computing, the potential path to scalable
quantum computing is clear at least in principle [12]. The first step towards optical quantum

71
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computing was successfully taken through the demonstration of two-qubit entangling gates
[53–59], the next major step was to address the issues on the path to scalability. While
the challenges optical quantum computing face in this respect are manifold, the individual
limitations must each be addressed. Thus demonstrating the extension from entangling two-
qubits to a larger number of qubits becomes the next aim. The demonstrated two-qubit
CSign gate of chapter 3 is, like all other optical quantum gates demonstrated so far, only
probabilistic, with a success probability of 1/9. Chaining such gates to circuits rapidly
reduces the success probability to unfeasible realms especially when paired with the ever
decreasing probability of generating the appropriate photon number via spontaneous PDC.

One improvement was suggested by Ralph [60]. Instead of simply chaining the gates and
feeding one output into the next gate as input as shown in figure 4.1a), one combines the
the second gate action into the dump-port of the first gate as shown in figure 4.1b). This
reduces the portion of the signal that is dumped and thus improves the success rate from
1/81 for two chained CSign gates, to 1/27, or by a factor of 3. Even better, this method
can be expanded infinitely, leading to a circuit success probability Pcirc ≈ (1/3)N (instead
of (1/9)N , where N is the number of involved qubits. While this obviously does not solve
the problem of ever decreasing success probability for large N , it certainly improves the
feasibility of test circuits operating in the small N limit. The downside of this gate logic
is that as the two interactions are both controlled in part by the input state of the central
qubit (CZ action imposes the sign shift if and only if both qubits are in the logic |1〉 state),
and since the logic of the bottom gate is inverse to that of the top gate, the gates are not as
flexible as individual gates. For example it is not possible to place a single unitary rotations
between the two gates to alter the action of the qubit that is interacting in both gates.

There are several challenges to be overcome in implementing such a gate experimentally:
First and foremost, it requires three qubits. A single PDC event will thus not suffice and as
PDC is spontaneous and terribly inefficient, this drastically reduces the rate at which the
circuit can be operated. A second difficulty lies in the fact that photons from a single down-
conversion event share certain correlations through their shared mother (pump) photon,
which reduces the required effort to make them perfectly indistinguishable for the non-
classical interference at the heart of our quantum gates.

For a proof-of-principle demonstration one can replace one of the inputs to such a three
qubit gate with a strongly attenuated coherent state [61, 62], which has to contain on average
less than one photon per pulse. As our circuit started of with a pump laser at the appropriate
frequency for the quantum logic, one could use the unconverted light of the Ti:Sa laser for this
coherent state input as it is by definition at the correct wavelength and the same repetition
rate. After attenuating the fundamental that passed through the second harmonic separator
in fig 2.4 with multiple stacked neutral density filters followed by crossed polarises with a
half-waveplate between them for tuneability and finally an interference filter of the same kind
as used on the PDC photons to ensure the same spectral properties, the unconverted light
from the Ti:Sa laser was coupled into a single mode fibre and sent to the gate as the third
photon for out three qubit gate. The experimental setup is shown in figure 4.2 schematically
and a photograph of the setup is provided in figure 4.3. Measurements with fibre-coupled
SPCMs confirmed 104 to 107 photons/s in the weak pulse, depending on the attenuation
set by the setting of the HWP. Clearly we achieved the precondition of an average photon
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Figure 4.1: Chaining of CZ gates. In the dual rail picture the polarisation encoded qubit gets
split across two rails one per logic mode. In a) one naively uses the output of the control qubit of the
first gate as the input for the control qubit in the second gate. The success rate of a single CZ gate
of this kind is 1/9 leading to a total success probability for chained gates of (1/9)N , where N is the
number of implemented gates. b) In the scheme suggested by Ralph [60] a significant improvement
is achieved by simultaneously interacting multiple qubits on the different logic rails. As this makes
the dump port redundant for all but the two outer most qubits, the success probability becomes
∝ (1/3)N . This scheme can be readily expanded to an arbitrary qubit number.

number of less than 1 photon per pulse given our 82MHz repetition rate. While we managed
to find non-classical interference between the weak coherent state and the PDC photons on
the second PPBS (HOM-dip shown in figure 4.4), the signal was very noisy (See section 4.2.3
for a discussion why the noise increased) and the reconstructed states were very mixed and
far from ideal.

At first the lack of a high visibility was believed to be due to some poorly understood
property of the source of the photons. As one photon was generated in a non-linear crystal
via parametric down-conversion, while the other photon was emitted by Ti:Sa crystal during
stimulated emission and subsequently interacted with many optics, it was thought to be very
possible that distinguishing information in some degree of freedom was imprinted through
these differences. Therefore a second pass of the laser pulse through the down-conversion
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Figure 4.2: Schematic depiction of the experimental setup of the three qubit CSign gate fol-
lowing the scheme suggested by Ralph [60], we use the dump PPBS for a further interaction. This
can be extended indefinitely by adding the elements in the ”Repeat unit” to the last PPBS in
either arm. Half-waveplates (purple blocks) between the PPBS switch the logic ensuring that a)
each logic mode experiences the same attenuation and that each input mode can only interact with
its next neighbours. The success probability is increased by a factor of 3 compared to chaining of
independent gates.

Figure 4.3: Experimental realisation of the 3 qubit gate. Again the added ”Repeat unit” is
highlighted. The basic gate is the same as used in the CSign-gate of the chapter 3 before the
upgrade to single mode fibre collection.
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crystal was set up and down converted photons in the backward direction were collected as
described in section 2.2.2. But even after replacing the weak coherent state input with a
down-conversion photon, and continuing to collect threefold coincidences, the quality of the
results did not improve. Subsequently the attempt of implementing a three qubit gate was
deferred as it became obvious that an investigation of the source of the degradation of the
gate performance was necessary to allow further progress with this kind of gate. The PPBS-
type CZ gate had been successfully implemented not only in our experiment of chapter 3,
but simultaneously by two further groups [54, 55]. It was thus known, that these gates
are capable of very high quality performance. The main difference we faced was trying to
interact photons generated independently from each other. We hence set out to investigate
the performance of a single controlled sign gate with photons generated in independent
down-conversion events. As these are effectively independent photons, this experiment was
dubbed the Independent Photon Gate, or IPG for short.
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Figure 4.4: Finding a needle in the Haystack: (Top) Graph of the original scan finding the
HOM-interference between one photon generated by PDC and a weak coherent state. This graph
is to demonstrate the significant difficulty of finding this interference feature in front of large back-
ground variations. The HOM-dip is the small drop at the beginning of the graph at approximately
18mm. Singles 1 is the coherent state, while singles 2 is the down converted photon. The delay of
the coherent state is scanned. The coupling efficiency of the scanned input to both detectors varies
significantly during the scan. This is due to the non-perfect alignment of the translation stages
with the beam path and gives rise to the large change in count-rates. The correlation between total
singles and expected rate of coincidences is also varying due to this effect, giving a non-trivial rela-
tionship between the observed singles count-rates and the coincidence rate, leading to the drop in
coincidences around the 21 to 24 mm region while the singles rates do not drop significantly in this
regime. Error-bars for the singles are smaller than the symbol size. For clarity of the graph, only
every 20th measurement point is displayed and the error bars for the coincidence signal have been
omitted. (Bottom) HOM-Interference between one photon generated by PDC and a weak coherent
state after optimisation of the alignment and scanning over a much shorter range, thus reducing
the drift. The signal is fitted with a Gaussian + linear function to compensate for the sloping of
the coincidence signal due to the altering coupling efficiency of the scanned weak coherent state.



4.2 The Independent Photon Gate 77

4.2 The Independent Photon Gate

Investigating the action of a quantum gate with independent photons is significantly more
important than it might seem at first glance: a full scale quantum computer will require
thousands of gates and thus thousands of individual qubits, here photons. Individual single
photon sources are currently being developed [18–20], but suffer from a variety of undesired
effects, such as low success probabilities, changes in spectral characteristics or jitter in the
timing of the photon creation to name only a few of the problems. They are currently not
at a level which would allow their implementation into such multi-qubit gates. Therefore
all implementations use the current gold-standard of creating single photons via parametric
down-conversion (PDC), a process in which one mother photon spontaneously decays into
two correlated daughter photons. The draw back of this mechanism is the extremely low
probability to create a single pair of photons and its even lower probability to create multiple
pairs, coupled with an increase in relative background from the next highest emission order
when the intensities are increased. Thus PDC allows the principal study of required elements
and gates, but is rendered unsuitable for the implementation of many concatenated gates as
needed for a quantum computer.

We explored the consequences of moving from dependent to independent photons in
optical quantum computation. Moving to independent sources will most likely mean to
depart from the correlations that down-converted photons share and the eased requirements
to ensure indistinguishability1. In fact independent sources have been used to demonstrate
non-classical interference, and found to perform worse than a pair of dependent photons,
the difference being attributed to higher-order photon terms and spectral mismatch [63] and
timing and spectral mismatches [64]. These are striking results, as non-classical interference
lies at the heart of optical quantum computation. Indeed, entangling gates using independent
downconversion sources achieved entangled-output state fidelities up to 78% [58] and 79%
of ideal [65], worse than the dependent photon counterparts, with fidelities up to 87% [56].

The gate we used is effectively the same two qubit gate as described in detail in chapter
3, the main alteration being, that we now use single heralded photons from different down-
conversion events as inputs into our gate. To generate them, we use the four-photon version
of the V2-source as described in section 2.2.3. The emitted PDC photons were coupled into
single mode fibres, collecting about 35kHz (30kHz) coincidences in the forward (backward)
direction. One fibre of each direction was directly fed into a silicon avalanche photon detector
(SAPD) while the other fibre injects its photon into the gate as shown in figure 4.5b). Hence
the photons used to interact in the gate come from to separate down-conversion event and
thus do not share the correlations which exist in between the two paired photons of a single
event. In this context the photons can be thought of as independent. However they do share
the common laser pulse generating them and thus have a fixed time delay between each
other and also share the polarisation reference frame through the polarisation of creating
laser pulse. These however are correlations that might well carry across to novel sources
through i.e, reference beams and electronic trigger signals.

Furthermore to emulate the behaviour of different future photon sources more accurately,

1Namely the spectral overlap in the degenerate case, polarisation correlation, the fixed timing relation,
and even the spatial correlation defining where the paired photons can be found.
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Figure 4.5: a) The pump is reflected after passing through the down-conversion BBO-crystal
and travels through it a second time in the opposite direction. Therefore pairs can be emitted
either in the forward or backward direction or in both as required for our gate. One photon per
pair is detected immediately at D1 and D4 to herald the photons that travel on to the gate. As
the focus of the pump beam lies before the retro-reflecting mirror, the emission probability for
the forward pass is higher than the backward pass. b) schematic of the gate: The conjunction of
half and quarter waveplate and polarising beamsplitter allow the controlled input (detection) of
any desired state. The partially polarising beamsplitter is ideally perfectly reflective for vertical
polarisation, while reflecting 1/3 of the horizontal component.

we altered the source in such a manner, that the waist of the focus for the pump pulse is no
longer half way between the forward and backwards pass on the retro-reflecting mirror, but
is moved closer towards the forward pass, as shown in figure 4.5a), simulating independent
sources of unequal emission probabilities.

4.2.1 Non-classical interference of independent photons

We measured the non-classical interference for the potentially interfering |H,H〉 input state
and achieved a visibility of 76.8%±1.2% as shown in figure 4.6. As we are using beamsplitters
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with a reflectivity of ηH = 0.35, the maximum visibility Vmax that could be achieved is lim-
ited to 82%. We hence use the relative visibility Vrel = V

Vmax
, which allows easy comparison

to those experiments where a 50:50 beamsplitter(Vmax = 100%) was employed. We achieved
a Vrel = 93.7% ± 1.4%, which is the highest relative interference visibility for independent
photons reported to date. While we used spatial filtering with single mode fibres after the
gate, the previous best mark of 90.8±1.7% [61], was achieved with a fused fibre-beamsplitter,
effectively removing any spatial mode matching imperfections. It is hence specially notewor-
thy that we manage to surpass this mark and indicates the quality of our setup and again
the power of the spatial filtering with the single mode fibres.
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Figure 4.6: Hong-Ou-Mandel Interference between independent heralded photons. As the
photons interfere on a 0.35:0.65 beamsplitter the maximum visibility is limited to 82%. (Top) Due
to thermal oscillations the coupling efficiency varied drastically during the scan causing the sharp
drop in count rates. (Bottom) This effect can however be undone by normalising the measured 4
fold rate to the singles rates.The four-fold count rate is divided by the square root of the product
of the contributing singles rates and has then be rescaled to actual count rate level. This correction
does not alter the visibility, which is found to be 72.7% which is a record high relative visibility of
93.4% for independent photons.
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4.2.2 Beating the clock: Iterative (Process) Tomography

Moving from a two photon or one down-conversion event experiment to a multi-pair setup
has one significant impact, which is the probability with which such events occur. While
we have on the order of 104 coincidences/s even after the lossy gates with two photons,
this drops to about 1/s when using four photons. Even not registering the fourth photon
and thereby evading the loss probability for it, does not significantly improve this rate,
but in turn makes the signal significantly more susceptible to noise (See Section 4.2.3 for
details). While the obvious solution to this arising problem is to simply integrate for a
longer period of time, this gives rise to the revival of the temporal stability issue. While
the overcomplete tomography helps with short term fluctuations of i.e. the laser output
power through additional normalisation possibilities as discussed earlier, it is not capable of
addressing long time scale issues that arise as a more physical manifestation, i.e. the ghosts
of thermal drift or simple stress relaxation in any translation stage or any of the optical
fibres as these actually alter not the counting statistics, but the quality of the alignment and
thus of the non-classical interference. This can not be undone mathematically. One example
of such effect can be seen in the HOM-scan shown in figure 4.6. Here both the singles and
subsequently the coincidence signals undergo a periodic sharp drop in count rates with sharp
recovery. As each point in the graph corresponds to 200s integration time, one can derive
that the effect has a period of 40 minutes. Thus in the rapid two-photon tomography with
a total active time of approximately 100 minutes such an effect would have been barely
visible. For the four-photon coincidence circuits there would be a significant effect on every
4th measurement. For the Hong-Ou-Mandel scan this effect can be undone by normalising
to the single count rates as discussed in the figure caption. For tomography data such a
mathematical compensation is not feasible.

Nevertheless these effects can be countered with a relatively simple approach. Instead of
measuring each output state for a long time, i.e. 10 minutes/point in one iteration, we use our
automated routine, to continuously cycle through all measurements and collect data for only
a short period (< 1min.) and simply repeat this multiple times, until each measurement had
again been integrated for the desired total duration of 10min. The benefit of this iterative
tomography is that short term drifts can be compensated for via normalisation, and the
effect of long term drifts is damped as it is spread equally over all output states.

At a later stage, when additionally to the already automated analyses the input state
generation was also automated, the iterative tomography was further extended from state
to process tomography, where all required settings for one process tomography would be
repeated iteratively with a short duration each time.

4.2.3 Why not detecting every photon hurts

It has been mentioned earlier that the attempt to utilise an attenuated laser beam as a
photon source degraded the gate performance, as did the detection of only three (or even
two) photons in the independent photon gate. The cause of this might not be immediately
clear, but now in conjunction with understanding the error modes of the gate should become
more obvious. Neither of these methods alter the gate architecture, hence the alignment is
all the same. All use the same lossy detectors, so the solution lies in the source. As we have
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discussed in section 4.4.3 there is a non-zero probability of generating multiple photons in
one spatio-temporal mode this probability is equal to that of generating two pairs of photons
in different spatio temporal modes. If one of these modes is then injected into a gate where
there is a non-zero probability of the photons reaching the two output modes, even thought
they are injected in a single input mode, than this can lead to a coincidence count. The
state of the photons however will not be governed by the gate dynamics as the photons
never interfered or where even influenced by the state preparation in the second input. The
obvious solution is to detect not only the gate output modes but also the trigger photons, i.e.
the paired photons that are not injected into the gate. These will then herald that a photon
was actually created in each input mode for the gate. Again detecting only one of the trigger
photons opens one up to the same failure mode, however limited to only one PDC direction
as the multi-pair event had to occur in the direction where the trigger was detected. As the
trigger photons never overlap or interact, they can not be replaced or mistaken for a photon
from any other source.

For the case where an attenuated laser beam was used that had on average less than
one photon in its mode, the same problem occurs, where such a coherent state always has a
non-zero probability of containing more than one photon and additionally lacks the paired
photon production that allows one to trigger of it. For experiments with independently
generated photons it is hence imperative to detect all photons that one wants to create (not
just all that one wants to utilise) to ensure highest gate fidelity.

4.2.4 Prebiased state generation: The making of the ’ishes

In this experiment we pre-bias the input states. into the gate to obtain higher count rates
as in the implementation described in chapter 3. We do not flip the polarisation after the
interaction and employ dump PPBSs to balance the probabilities for horizontal and vertical
components of superposition states in the H-V-bases. Thus the partial-polariser unbalances
input states, e.g. a single diagonally-polarised photon input in mode a, (a†H+a†V )/

√
2, be-

comes in mode c, (c†H+
√

3 c†V )/2. To balance the state, we employ pre-biasing [35, 55].
While the former requires no knowledge of the input state, it lowers the success probabil-
ity to 1/9 compared with 1/3 for the state dependent pre-biasing. While pre-biasing is
an acceptable procedure for characterising these small scale gates and allow us to obtain
a much increased count rate, it is unsuitable for large scale implementation with concate-
nated gates. For example, a diagonally polarised output state in mode c can be achieved by
sending (

√
3 a†H+a†V )/2 in mode a (mode labels as in figure 4.13). These pre-biased states

were named ’ishes, as in Dish and Lish2. In order to generate such pre-biased states, some
non-standard waveplate settings had to be found. A HWP set to ±15◦ will generate the
desired Aish or Dish states from a pure H input. As in our setup the half-waveplates were
followed by a quarter-waveplate (QWP), we also needed to rotated the QWP by ±30◦ in
order to align its optic axis with the polarisation vector in the Bloch-sphere and thus have
the QWP not affect the state. In order to create the Lish or Rish states the same procedure
was used for the half waveplate, but the quarter waveplate was left at the 0◦ position.

2This labelling is analogous to the word creations such as largish which mean kind of large. A Dish state
is kind of diagonally polarised.
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4.2.5 State Tomographies of the IPG

The measurement process is identical to that used in the dependent two-photon gate de-
scribed in chapter 3. The process tomography was subdivided in the 16 state tomographies
and again we observed fixed rotations of the superposition states, which were corrected for
numerically after the completion of the experiment. The gate design in the dependent case
balanced the probabilities of the horizontal and vertical component of superposition states
by flipping the logic polarisations with a half waveplate and subsequently propagating the
photons through a further PPBS. This resulted in the flipped output states to what one
would naively expect as seen in Figures 3.3 to 3.10. As we here pre-bias our input states,
this flipping of the logic populations is no longer necessary and the obtained output states
are as originally expected.

The record breaking high visibility of our non-classical interference easily leads to the
expectation of a gate performance similar to that of the dependent CSign gate, albeit with
a slightly lower fidelity as the relative visibility was not quite as good. However, while
the tangle of states in the dependent gate ranged in the mid sixties, only one state for the
independent gate managed to surpass the 50% mark and all other measures were significantly
lower as well. State fidelities range from the high nineties (VV) to only 68% for LH, with
the average of the state fidelities being 81%. The reconstructed states of the individual state
tomographies are shown in figures 4.7-4.10, and the results for state fidelity, purity tangle
and linear entropy are summarised in table 4.1.

Input State Purity Linear Entropy Tangle Fidelity with ideal

HH 0.954 0.062 0.015 0.95
HV 0.847 0.203 0.016 0.88
HD 0.710 0.386 0.012 0.75
HL 0.656 0.458 0.038 0.70
VH 0.878 0.163 0.11 0.88
VV 0.927 0.098 0 0.98
VD 0.876 0.166 0.018 0.79
VL 0.924 0.101 0.014 0.90
DH 0.621 0.506 0 0.76
DV 0.897 0.138 0.008 0.88
DD 0.667 0.444 0.478 0.74
DL 0.720 0.374 0.523 0.78
LH 0.606 0.525 0 0.68
LV 0.940 0.081 0.020 0.94
LD 0.704 0.395 0.471 0.71
LL 0.727 0.365 0.595 0.72

Table 4.1: Summary of the results of the state tomography for the CZ gate between inde-
pendent photons. The general output state quality is worse than when operating the same
gate with dependent photons, as shown in table 3.2.

The high fidelities and low linear entropy values for the states with two equal and pure
logic inputs (HH, VV), as well as the high fidelity of any state that contains a vertical input
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are noteworthy. The relatively high linear entropy values and low fidelities of the logically
pure HV and VH states are also surprising. While it is easy to understand the better-than-
average results for states that contain a vertically polarised state on the basis that vertically
polarised photons do not under go any interaction and thus are seemingly unaffected by
the gate, the argument becomes some what stressed when trying to explain why the gate
performs significantly worse when using the HV and VH inputs, which not only contain a
vertically polarised photon, but are still logically pure. As we will see these degradations
arise from a plain violation of one of the fundamental assumptions of the gates relying on
non-classical interference: single photon inputs. This and other noise effects will be discussed
in detail in section 4.4.
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HH

HV

HD
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Figure 4.7: Density matrices derived from the state tomographies of the independent CZ gate
for the input states HH, HV, HD, HL. The rotations of the PPBS have been corrected for, by
finding the optimal single qubit rotation that gives the highest average fidelity for all input states
with the ideal output states. As this gate also uses pre-biasing of input states to balance the
output populations, the output state has not been flipped as was the case for the dependent gates
of chapter 3.
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Figure 4.8: Density matrices derived from the state tomographies of the independent CZ gate
for the input states VH, VV, VD, VL. The rotations of the PPBS have been corrected for, by
finding the optimal single qubit rotation that gives the highest average fidelity for all input states
with the ideal output states. As this gate also uses pre-biasing of input states to balance the
output populations, the output state has not been flipped as was the case for the dependent gates
of chapter 3.
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Figure 4.9: Density matrices derived from the state tomographies of the independent CZ gate
for the input states DH, DV, DD, DL. The rotations of the PPBS have been corrected for, by
finding the optimal single qubit rotation that gives the highest average fidelity for all input states
with the ideal output states. As this gate also uses pre-biasing of input states to balance the
output populations, the output state has not been flipped as was the case for the dependent gates
of chapter 3.
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LH
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Figure 4.10: Density matrices derived from the state tomographies of the independent CZ gate
for the input states LH, LV, LD, LL. The rotations of the PPBS have been corrected for, by finding
the optimal single qubit rotation that gives the highest average fidelity for all input states with
the ideal output states. As this gate also uses pre-biasing of input states to balance the output
populations, the output state has not been flipped as was the case for the dependent gates of
chapter 3.
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4.2.6 Process Tomography of the IPG

Using the measurements for the process characterisation of the IPG and reconstructing the
χ matrix for the process gives us the first full analysis of a two-qubit entangling gate per-
formed with independently generated photons. Due to the pre-biasing of the gate, certain
input states have higher signal rates leading to different integration times for the individual
state tomographies to achieve the same counting statistics. However due to technical failure
and environmental impact3 the integration time was not adequately adjusted for all states.
Nevertheless, the imbalance in detection efficiencies can of course be accounted for mathe-
matically by adequately weighting of the individual counts. It was found however, that the
reconstructed process had the same fidelities within the error irrespective of whether this
correction was applied or not. Hence the here presented data does not contain the read-
justed weighting of the individual state tomography data sets. The ideal process is shown
in figure 4.11, while the real and imaginary components of the reconstructed chi matrix for
the experimentally implemented gate are shown in figure 4.12. We find a process fidelity of
78.2 ± 1.5%, staggering 11% worse than for the dependent gate. The average gate fidelity
is found to be 82.5 ± 1.5% As the fidelity is known to be a relatively forgiving measure,
the steep drop in comparison to the equivalent gate with dependent photons is thus most
surprising since the achieved relative visibility for the Hong-Ou-Mandel interference was only
on the order of 5% worse. As the HOM-Interference only characterises the distinguishability
of the interfering photons, this drastic difference in fidelities lead to the question what other
effects contribute in what way to the degradation of the gate performance.

3The air-conditioning in our lab was found to be faulty and caused large temperature fluctuations. The
installation of a replacement system took approximately eight months, by which time the experimental aims
of the group had moved on.
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Figure 4.11: Process matrix of the ideal CZ operation in the Pauli-basis. The real part of the
matrix is shown, the imaginary part is identically 0. The shown matrix here is actually for a CZ
gate with an additional bit-flip, i.e. CZ(X1⊗X2. The standard CZ gate is an equal superposition
of the II+IZ+ZI−ZZ processes and full coherences between them.
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Real Part

Imaginary Part

Figure 4.12: Real and imaginary part of the reconstructed experimentally determined χ ma-
trix. While a quick visual inspection seems to indicate good agreement to the ideal case, a closer
inspection indicates undesired populations and coherences and lower than desired coherences where
desired. After optimisation over all local unitary single qubit rotations, Fp = 78.2± 1.5%.
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4.3 Modelling the Independent Photon Gate

In order to get an understanding for the effects that degraded the gate performance in
the IPG gate, a complete model of the gate, except for the effects of mode mismatch, was
constructed. The model accurately describes the generation of photons through double pass
(independent) PDC, the actions of the gate with realistic beamsplitters, photon loss, and
last but not least employs the same projective measurements as experimentally employed
to analyse the data and subject it to the same density matrix reconstruction as for the
measured data sets.

A schematic of the model is shown in figure 4.13, with mode labels as used in the calcu-
lation itself.

Figure 4.13: Schematic of the circuit used to model the independent photon gate. Photon
pairs are independently generated into the modes f1 & f2 and b1 & b2 through parametric down
conversion. One photon per pair is immediately detected to herald its partner photon, which is
injected into the gate. Polarising beamsplitters (PBS) and waveplates allow the generation of any
desired input state. The polarisation modes are separated at the PBS and interact separately at
beamsplitters of reflectivities ηH and ηV . The separated polarisation modes are then recombined
spatially, and a further beamsplitter of reflectivity ki emulates the effect of photon loss. The
detection is preceded by tomographic measurements with a set of quarter and half waveplates and
a PBS.

Parametric down-conversion can be described by the evolution of the vacuum state by

|ψ(t)〉 = Uint|ψ(0)〉 = eiHintt/~|ψ(0)〉, (4.1)
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where if we want to describe two down-converters simultaneously i.e. in the forward and
backward direction, the interaction Hamiltonian becomes

Hint = Af f1
†f2†pf + Abb1†b2†pb +H.C. (4.2)

where Ab and Af are the probability amplitudes for the forward and backward creation of

a photon pair; pi and f †i and b†i are the pump-annihilation and downconversion-creation
operators in direction i, respectively; and H.C. is the Hermitean conjugate. Taking the
Taylor expansion, and retaining only terms where at least one pair of photons are emitted
into f & b (emission into only one will not cause a trigger event and are disregarded), and
ignoring pump field depletion, we obtain the source terms,

Uint ≈ Af Abb1†b2†f1†f2† +

(AfA
2
bb1†2b2†2f1†f2† + A2

fAbb1†b2†f1†2f2†2)/2. (4.3)

The first term describes creation of one pair of photons into each the forward and backward
modes, whereas the last two terms describe production of 2+1 and 1+2 photon pairs respec-
tively. The contribution from terms higher than these have been found to be negligible and
are hence ignored.

We encode logical 0 & 1 in vertical and horizontal polarisations, V & H, respectively.
The input modes to the gate, f1† and b1†, are projected with a polarising beamsplitter,

f1† → α a†H+β a†V ,

b1† → σ b†H+τ b†V , (4.4)

and the action of the controlled-z gate is described by,

a†j → −√ηj c†j+
√

1− ηj d†j,

b†j →
√
ηj d†j+

√
1− ηj c†j, (4.5)

where j=H,V . Ideally, the reflection probabilities are ηH=1/3 and ηV =1, implementing
the maximally entangling controlled-sign operation [66, 67]. Photon loss is modelled by
additional beamsplitters, with reflectivity ki. As the entire circuit is linear and all loss
mechanisms are indistinguishable, the location of this loss operation is arbitrary assuming
that it is polarisation independent: without loss of generality we model it before the de-
tectors. Measurement of both the trigger and gate photons is modelled by ideal projective
measurements with non-number-resolving detectors. Thus our model describes the existence
and strength of higher order pair emission, deviations in gate beamsplitter reflectivities, and
photon loss: all effects observed in our experiment. A quantitative comparison of our model
and experiment requires values for the down-conversion amplitudes, Af , Ab, the beamsplitter
reflectivities, ηi, and the losses, ki. The reflectivities are easily obtained from direct mea-
surement either with a suitable laser or the down-converted photons themselves. The other
values need to be derived from specific measurements made using input states designed to
extract these quantities.
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4.3.1 Deriving the experimental parameters

To derive the values for the down-converision amplitudes, consider the situation where one
pair of photons is emitted in both the forward and backward directions. The probability of
detecting a fourfold event with measurement settings {r, s}, where r, s ∈ {H,V,D,A,R, L},
is,

~P 11 = A2
fA

2
b

(
4∏

i=1

(1− ki)
)
~γ11, (4.6)

where the superscript on P refers to the photon number in each gate input mode, a & b;
ki is the probability of photon loss in modes {i}={f2, c, d, b2}, and ~γ11 is the vector of overlap
probabilities between the gate output and the measurement setting rs, ~γ11={〈rs|U†gate|ψin〉}2.

Without loss of generality we choose |ψin〉=a†Db†D|00〉 in the following discussion, so as to
equally populate the logical states.

Experimentally it is tempting to obtain ~P 11 by inputting |DD〉, and forming a vector of
the resulting probabilities, P 11={Crs/Ctot}, where C are counts and Ctot is the number of
total counts in the appropriate POVM (i.e. CHH+CHV +CV H+CV V , CDD+CDA+CAD+CAA
...). However, this does not account for events where 2 pairs of photons are emitted in the
one direction and 1 pair in the other—a non-negligible background. These terms cannot be
measured directly, though they can be estimated in the following manner. Consider the 2
pair emission in one direction, e.g. forward, and stop the photons from the other direction
from entering the gate, e.g block mode b. The probability-vector of detecting a fourfold
event now is,

~P 20 =
1

4
A4
fA

2
b

(
4∏

i=1

(1− ki)
)

(1 + kf2)~γ20, (4.7)

where ~γ20={〈rs|U†gate|ψ′in〉}2 and |ψ′in〉=a†Da†Db†D|00〉. (Swapping the roles of the forward

and backward directions gives ~P 02 & ~γ02). Experimentally we obtain ~P 20 & ~P 02 by blocking
in turn one of the gate inputs, while continuing to count four-fold events—since there is only
one gate input active at a time, and both gate detectors fire, two photons must have been
injected in the same input. In the case of perfect detection efficiency, the total number of
events where two-forward and one-backward pairs are created is N20=~C20~γ20. This of course
is the same whether mode b is blocked or not, i.e. N20=N21 and

~C20~γ20 = ~C21~γ21. (4.8)

From the ratio of eqns 4.7 & 4.6 the forward amplitude is,

A2
f =

1

1 + kf2

4∑

r=1

4∑

s=1

P 20
rs γ

11
rs

P 11
rs γ

20
rs

. (4.9)
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Remembering that Prs=Crs/Ctot, this becomes,

A2
f =

1

1 + kf2

4∑

r=1

4∑

s=1

C20
rs γ

11
rs

C11
rs γ

20
rs

=
1

1 + kf2

4∑

r=1

4∑

s=1

C20
rs γ

11
rs

(C ′11
rs − C21

rs − C12
rs )γ20

rs

, (4.10)

where C ′11 is the measured number of four-fold events, C ′11=C11+C21+C12 and, from equal-
ity 4.8, C21

rs=C20
rs γ

20
rs/γ

21
rs and similarly for C12. (Swapping the forward and backward roles

in the above argument yields Ab). From our measurements we determined Af=0.137 and
Ab=0.208 in the no-loss limit, ki=0. Note that in the high loss limit, ki→1, our estimate of
the down-conversion amplitudes Ai will decrease by a factor of

√
2. This somewhat counter-

intutitive result highlights the critical role of loss in the presence of higher-order photon
terms: the combination causes errors, in this case an overestimation of the downconversion
probability.

We estimated the loss probabilities of our experiment using the following method. We
input a pair of vertically-polarised photons, which ideally both reflect from the PPBS, and
measure with the analyser in the VV setting. We measured the singles rate of each detec-
tor, Si and the two-fold coincidences, C12 & C34, caused respectively by pairs generated in
the forward and backward directions. Accounting for background singles counts, B, and
coincidence accidental counts, Acc, the loss in mode i is,

ki = 1− Cij − Accij
Sj −Bj

(4.11)

where i, j ∈ {1, 2} or {3, 4}. We obtained, kf2=0.904, kc=0.953, kd=0.970, and kb2=0.911.
Clearly we are in a high-loss regime: the downconversion amplitudes become Af=0.116 and
Ab=0.177.

4.4 Learning from the model: Signatures of the errors

Having successfully determined all input values for the model, we can extract the same kind of
results from the model as we obtained from the experiment. By reconstructing the individual
states as predicted by the model we can not only compare them to the experimental values,
but as the model gives us the option to vary any parameter, we can simulate every individual
error source or choose to turn it off, by replacing the experimentally obtained value with
the respective ideal value. A summary of all values, ideal and experimentally determined, is
given in Table 4.2.

By turning off all error sources bar one, we can learn the individual signatures of specific
errors. One of the most instructive cases is the HV input to the gate. While it neither seeks
to create entanglement, nor does it contain a superposition state, it still has a population
of both logic modes. In principle the expected output state is very easily understood and
a single spike on the HV population is expected, as shown in figure 4.14a). For comparison
the experimentally obtained state was shown in figure 4.7 as the second diagram from the
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Quantity Variable Value
Ideal Exper.

PPBS reflectivity for H ηH 1/3 0.35
PPBS reflectivity for V ηV 1 0.99
Loss probability, mode f2 kf2 0 0.904
Loss probability, mode b2 kb2 0 0.911
Loss probability, mode c kc 0 0.953
Loss probability, mode d kd 0 0.970
Measured forward amplitude Af 0.137 0.116
Measured backward amplitude Ab 0.208 0.177

Table 4.2: Summary of values used as input parameters for the model. When modelling the
presence of a given error the experimental value is utilised; to switch the error off, the ideal
value is used. To suppress the higher-order down-conversion events for the ideal source case
a post-selection on terms with only one pair generated in either direction is forced.

top. In the following section we will look specifically at the contribution of each individual
error source.

4.4.1 Non-ideal beamsplitter reflectivities: You get what you pay
for

To investigate the effect of the non-ideal splitting ratios of the PPBS, we use realistic val-
ues only for the beamsplitter ratios, while using the ideal values of table 4.2 for all other
parameters and suppressing multi-photon events. We reconstruct the state, which is shown
in figure 4.14b) and observe that, while the spike of the desired HV population dominates,
there is a non-zero population in the VH mode and significant coherences between them.
The obvious cause must now lie in the wrong beamsplitter reflectivity. In this case, taking
the ideal two photon input into the gate and splitting them into the modes aHbV gives us
the state before the interaction beamsplitter. Clearly there is no interference as the two
photons are in different modes . While the H photon always had some probability of leaving
the gate in either the cH or the dH mode, the V input photon should always leave the gate
in the reflected mode if ηV = 1. While we only allow for a 1% transmission probability, it
is this small deviation that now allows detection of the |V H〉 rather than the |HV 〉 state.
Obviously the probability of detecting the vertically photon having ”slipped” through the
beamsplitter appears amplified with respect to the desired state as the probability for the
horizontal photon being transmitted is approximately twice that of it being reflected. It also
is immediately obvious that this must be a coherent process as the transmission through a
beamsplitter introduces no mixture to the state and preserves coherences.

4.4.2 Photon loss: Have you got all your marbles

Visualising the effect of photon loss is significantly more difficult than the effect of the wrong
beamsplitter reflectivity. The main problem is that photon loss has no effect if there are no
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Figure 4.14: Results of the modelling of the HV input state with the various error sources
turned on individually: a) shows the ideal state, with a single population in the HV mode of
magnitude 1. b) shows the effect of the wrong beamsplitter reflectivities, which lead to some
population of the VH mode and significant coherences between the HV and VH modes. For the
diagramms c) and d) the multi-pair emission has been turned on. While c) shows the state whith
only the multi-pair emission and an ideal beamsplitter leading to a very small population in the
HH mode arising from cases where two H photons where injected in the a mode of the gate. To
make this contribution of the higher order terms more obvious, d) shows the state as created by
multi-photon events exclusively and is thus ignoring cases where only one photon per gate input
is injected. Clearly the state contains a significant population in the HH mode, but shows no
coherence with the HV population. This is due to the fact that the input state is effectively a
mixture of the HH and HV mode and is not created by a unitary rotation of a pure HV state.

additional photons (higher order terms) in the system as long as we are using post-selection
on four-fold coincidences4, because the four fold coincident detection will not register an
event if one of the four detectors fails to fire. Therefore we are discussing photon loss in the
presence of multi-photon emission events.

Naively one might expect that the only effect loss has would be to dampen the total
detection probability. However when we do allow for photon loss and multi-pair emission

4Hence the degradation of the experimental results when we tried using only one trigger photon to increase
our count rate (See section 4.2.3) The individual heralding of our inputs contributes significantly to the high
fidelity.
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events, we notice that loss appears to amplify the effects of multi-pair emission. Again a
brief and generalised inspection of the photon behaviour in the gate helps to clarify this.
Assuming approximately equal probability of losing any one of the photons in the circuit, we
can always obtain a signal as long as one photon reaches each detector. Having created an
additional pair in one down-converter thus gives us a second bite at the cherry for detecting
a trigger photon, should we have lost the original one. Therefore the probability of any
output state of the gate when there is more than one trigger photon, is amplified relative to
the ideal input. The same effect slightly reduces this effective over-counting, if both photons
take the desired path, one has a second chance to detect the sought after state. However,
due to beamsplitter reflectivities and the non-classical interference between the photons in
the gate, this effect is generally weaker than the possibility at over-counting the ”wrong”
state due to the doubled trigger photon.

4.4.3 Higher order photon terms: Too much is never enough...

If the gate is ideal and loss-less and the only error is the occasional creation of multiple
photons in one of the down-converters, the expected output state for a HV-input is shown
in figure 4.14c) and d). We can clearly identify some population occurring in the HH output
mode. Where does this population come from? Obviously as the only allowed error is that of
multi-pair emission, this must be the source of error, but how? While in the ideal case there
are only two photons in the gate, and the coincident detection requires the registration of
both, and since a vertical photon is always perfectly reflected at the interaction beamsplitter,
the only possible output state in the ideal case is HV. Allowing two photons to populate
the input mode ah, than these photons have a 4/9 chance of splitting at the interaction
beamsplitter central in the gate. The vertical photon injected from the other input mode
still leaves the gate in the desired output mode d, however it is now overlapped with the
second horizontally polarised photon, so that we have cH(dH+dV ) (without paying attention
to the actual amplitudes or normalisation). When utilising state tomography, there now is
a non-zero probability of measuring a fourfold coincidence (two photons from the gate plus
the two trigger photons) during the |HH〉 output state-measurement. This gives rise to the
HH population in figure 4.14c), therefore one can easily see now that higher order photon
term cause the occurrence of output states initially thought to be impossible.

A second way in which non-single photon input states effect the gate behaviour has
already been discussed in section 4.3.1. If photons impinge on both sides of the interaction
beamsplitter, than they would usually undergo the desired interference, that is reducing the
amplitude of a certain state by a set amount. If multiple photons impinge from one side and
a single one from the other side, the behaviour of the interference is altered5 and the output
amplitudes are different to the desired ones [68]. Furthermore, as mentioned above higher
order pair emissions also combines with photon loss. Thus multi-pair emission becomes like
the Hydra that has multiple ugly heads that pop up and disrupt your experiment and the
more you investigate them to cut them off, the more ways you find in which they hurt your

5See section 7.1 for more details on how the non-classical interference behaviour is altered due to the
presence of more than one photon in one of the interfereing modes.
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precious6 results.

4.5 Model vs. Experiment

The model does not just unveil the individual contributions of the errors, but is obviously
capable of predicting the output state for any given input under any given circumstances
for the modelled errors. By calculating the expected output state for the same set of input
states and modelling the individual measurements, we can generate the same data set as we
experimentally obtained to perform both state and process tomography for any combination
of modelled noise sources, but most interestingly for the gate with the noise sources as de-
termined experimentally. We hence expect a very good overlap between the modelled and
experimental data. After calculating the process matrix of the model with (H)igher-order
photon terms, photon (L)oss and actual (B)easmplitter reflectivities7 for the PPBS we recon-
struct the χHLB-matrix which should be the most accurate description of the experimental
situation. Calculating the process Fidelity between the HLB-Model and the ideal CZ gate,
we find Fp = 81.4%, close to that of the experiment and the ideal at 78.2±1.5%. To confirm
that our model has not simply derived an equally bad, yet completely different, process to
that observed in the experiment, we calculate the process fidelity between the modelled and
experimentally derived process matricies after we optimise the experimental data again over
local unitary single qubit rotations with respect to the model, to compensate for the phase-
shift of the PPBS (not modelled). We find a process fidelity between the two χ-matrices
of 96.7 ± 1.5%. The remarkably good agreement between the model and the experiment
highlights the accuracy of our model and rewards the efforts in deriving the highly detailed
model and the required input values for it. As the model allows the individual investigation
of all errors, we have derived the χ matrices for all error combinations and calculated the
fidelity between them and the ideal and model. The values for both the process fidelity and
the average gate fidelity are shown in tables 4.5 and 4.4 respectively. Here the comparison
of the fidelity of the modelled χ-matrices lets us explore the impact of each individual error
source on the process and average gate fidelity.

We can see, that while loss has, as expected from section 4.4.2, no impact on the gate
performance by itself, the imperfect beamsplitters used during the experiment caused a 2.8%
drop in process fidelity by themselves. Higher order photon terms alone already degrade the
gate performance by 6.8%, which gets blown out to a stunning 15.8% once one considers that
loss is activated only due to the presence of multi-pair emission. Furthermore it is noteworthy,
that the contribution of the individual error sources is by no means linear, meaning you can
not simply determine the individual effect and perform either a sum or product to derive the
combined effect. Finally the difference between the HLB-model and the experiment of 3.3%
is attributed to mode mismatch, as it is the only known error source in optical quantum
computing that is not modelled here. Prior to this experiment, all modelled error sources
where well known, but all, especially the effect of multi-photon inputs, were considered less

6my precious...
7The bold, capital letters are used in labelling the different results obtained from the model, results from

the model with i.e. multi-pair emission and photon loss at realistic levels will be referred to as the HL-model.
They should not be confused with the non-bold letters H and L labelling the polarisation states.



100 Controlled-Sign gate between independent photons

Model settings Fp with ideal ∆Fp (wrt ideal) Fp with experiment ∆Fp (wrt exp)

ideal 100% 0% 78.2% 21.8%
L 100% 0% 78.2% 21.8%
B 97.2% 2.8% 80.2% 19.8%
BL 97.2% 2.8% 80.2% 19.8%
H 93.2% 6.8% 92.1% 7.9%
HB 88.0% 12.0% 94.9% 5.1%
HL 87.2% 12.8% 94.4% 5.6%
HBL 81.4% 18.6% 96.7% 3.3%

experiment 78.2(±1.5)% 21.8% 100% 0%

Table 4.3: Process Fidelities, Fp, between the models with all possible error source com-
binations and the ideal (column 1 & 2) and the experimentally determined (column 3 &4)
processes. As can be seen from the differences, the significant deterioration of the gate
performance is caused by the higher order photon terms. There is a very good agreeance
between the model with all error sources and the experiment, achieving a fidelity of 96.7%.
(wrt =with respect to)

Model settings F with ideal ∆F (wrt ideal) F with experiment ∆F (wrt exp)

ideal 100% 0 82.5% 17.5%
L 100% 0 82.5% 17.5%
B 97.8% 2.2% 84.2% 15.8%
BL 97.8% 2.2% 84.2% 15.8%
H 94.6% 5.6% 93.7% 6.3%
HB 90.4% 9.6% 94.9% 5.1%
HL 89.8% 10.2% 95.5% 4.5%
HBL 85.1% 14.9% 97.4% 2.6%

Experiment 82.5% 17.5% 100% 0%
±1.5% ±1.5%

Table 4.4: Average gate fidelities, F , for the models with respect to (wrt) the ideal (column
1 & 2) and the experiment (column 3 &4). Terms that can be turned on in the model are:
Loss L , given by measured losses in the experiment; Beamsplitter reflectivity B, given by the
measured beamsplitter reflectivities in the experimental gate; and the higher-order photon
terms H, a model of the source based on measurement that includes higher-order photon
terms. In the ideal case there is no loss, ideal beamsplitter reflectivities, and no higher-order
photon terms in the source. The overlap between χ-matrices is the process fidelity, Fp, it
gives: F=dFP+1/d+1, where d is the state dimension, here 4.

important and secondary to the effect of mode mismatch due to the very low probability of
emitting one more pair than needed thanks to the natural inefficiency of down-conversion.
This model contradicts this common belief and points to the few multi-photon events as



4.5 Model vs. Experiment 101

the main culprit for imperfect gate performance, making the development of either photon
number resolving detectors or genuine single photon sources the main requirement for the
successful future of linear optical quantum computing.

This new finding also explains, why despite record high visibility for the Hong-Ou-Mandel
interference for independently generated photons, the individual states and subsequently the
gate performance was considerably worse than was to be expected from the results obtained,
when implementing the gate with dependent photons.
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5
Exploring the realm of fault-tolerance

For quantum computing to become feasible and scalable one of the main feats to achieve
is that of fault-tolerance . Through a specific encoding and correction scheme a certain
level of gate failure—known as error probability per gate (EPG)—becomes tolerable and
can be corrected for using specific fault tolerant quantum codes. The error probability per
gate that can be sustained depends on a variety of assumptions [69], such as the specific
error correction code, the available resources and the distribution and kind of errors. Many
different thresholds have been derived for various combinations of assumptions of available
resources, however no effort has been made to compare these theoretically derived bounds
to experimentally realised gate performance. In this chapter we introduce two specific error
models, one which has yielded the highest reported threshold value to date and one that
assumes the most general errors. These two models will serve as our upper and lower
bounds for the fault-tolerance threshold respectively. We demonstrate how to compare the
performance of experimentally characterised gates to these thresholds using a method that
can be applied to any quantum computing architecture. Further we analyse the predicted
behaviour from our modelled gate to identify the required technological advances to reach
the realm of fault tolerance.

The work presented in this chapter was conducted by myself in close collaboration with
Alexei Gilchrist, Andrew Doherty and Andrew White. The idea for the optimisation of the
error bound for our experiment with respect to the gremlin model was thought of by Andrew
Doherty and implemented and optimised by Alexei Gilchrist.

5.1 Principles and Classic examples

Fault tolerance is the basic concept of retrieving information accurately despite the presence
of noise. Even though a given process is not error free, it is possible to encode the signal
in such a way that it becomes possible to detect some errors and correct them, so that the
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final process outcome is error free.
There are two basic concepts for fault-tolerance: one is feedback or feed-forward, which

seeks to actively compensate occurring errors, the other is redundant encoding, which pro-
tects the information by storing it in multiple copies.

Feedback is applied in everyday life in many places and relies on measurement of a
certain parameter to determine whether or not an error has occurred. One common example
is controlling the room temperature via an air-conditioner. If a temperature sensor detects
that the room temperature deviates from the desired or set temperature, the system adjusts
by either increasing or decreasing its cooling efforts. This mechanism works very well, if
the desired state is known, and an efficient measurement of a suitable indicator is possible.
When measurement is impossible or no a priori information is held about the expected or
desired state, this lack of information makes it impossible to determine if a deviation from
the desired state has occurred— errors are undetectable.

If feedback is unsuitable, redundancy commonly is the answer. This technique is, besides
others, used in modern digital communication i.e. digital and mobile phones, which face
a very noisy environment. Using analogue encoding, the effect of a noisy telephone line
was, well, noise in the line. The change to digital data transfer required some way of
compensating for the possible errors. In the analogous case, noise in form of a voltage
fluctuation would lead to additional frequencies and thus squeaking in the line. Moving
to the digitalised world, where all information is encoded in bits with values of either one
or zero, such fluctuations could swap 1’s into 0’s and vice versa. Thereby it not only adds
unwanted noise, but potentially alters the transmitted signal to a point where the information
is falsified. Redundant encoding protects against this by transmitting the same information
an odd number of times. Should one of the code bits flip a simple vote by majority of all
code bits retrieves the state of the underlying logic bit. This method has a high success
probability, as long as the probability of a bit-flip up to the correction point is less than one
half. Using more code-bits either increases the probability of successfully decoding the logic
bit or leads to tolerance of higher noise levels with the same success probability.

Modern classical error-correction mechanisms are far more sophisticated[22] than de-
scribed here, but the two methods described above are the underlying concepts on which
error-correction and thus fault-tolerance are based.

5.2 Quantum error correction and fault-tolerance

The attributes of qubits that lead to the might of quantum computing are also their draw-
back when trying to shield the computation against errors through noise. Feedback or feed-
forward1 in a quantum system faces the difficulty that each measurement causes back action
onto the state itself. While the strength of the measurement can be varied [35], this also
changes the amount of information that can be gained from the measurement. The choice
ranges from a fully projective measurement with maximal information gain, to a completely

1Forward here means forward in time, but back onto the very qubit that was measured, thus correcting
the measured state. The alternative feedback would feed the information about the experienced deviation
back onto the process seeking to correct the interaction process so that future qubits will be more likely to
be in the correct state.
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interaction free measurement that subsequently also reveals no information about the quan-
tity of interest. Feedback or feed-forward also requires knowledge of the expected state,
which generally is not given during a quantum computation.

This measurement back action also makes encoding into multiple qubits difficult due to
the no-cloning theorem2. The theorem states that it is impossible to create exact copies of a
quantum state, without destroying the original copy, making it impossible to posses multiple
copies of the same qubit. It was hence thought that a quantum computer would have to
consist of independently perfect steps, as it would be impossible to detect errors in the code
and compensate for them during one computational run. It came as a surprise when Shor
presented a code [70] that could correct for both bit-flip (X-) errors and phase (Z-) errors.
Capability to correct these two error types in principle suffices to correct any error. Shor’s
code required a total of nine physical qubits to encode a logic qubit, and was able to correct
for one error in the gate operation and one error during the error correction, which defines
the class of distance-5 codes. Steane independently discovered a code with only 7 physical
qubits [71], which still could correct for 2 errors in a logic gate step. These two papers
sparked research into the optimal fault tolerance methodology which soon revealed, that
with improved error correction schemes, distance-3 codes (capable of correcting one error
during gate operation or error correction) would suffice to reach fault tolerant quantum
computation.

To do a full computation, one will need many thousands of gates, with the total error
rate for the computation scaling with the number of implemented gates. The absence of
error correction would require the individual gate error rate to decrease further and further
for longer and longer3 computation to sustain the same success probability. By applying
redundant encoding and error correction after every single logic gate one can prevent the
spreading of errors through the computational code, removing the requirement for ever
improving architectures. Larger computations will still require better gates as the total error
probability scales with the probability of an error not being corrected at which obviously
scales with the number of implemented gates where this could occur. Of course the encoding
is not limited to the initial logic qubits, but can be applied again to the code qubits. As
the original code allowed for one error in our code qubits, we can now allow one error in our
code qubits, and to still correctly identify the state of our logic qubits. Since we can tolerate
again one error and still correctly retrieve the logic qubits, we have therefore increased our
tolerable error rate. More specifically, if the probability of an error on any one physical qubit
in the first encoding is p, this becomes the maximum tolerable error rate, as two errors in
our encoding of the logic qubit would lead to an unrecoverable error. If we encode the code
qubits of the initial encoding again, the failure probability decreases to p2, before we will
fail to recover our logic qubit. This further encoding comes at a price: there is an overhead
in operations and thus additional locations where errors can occur. These extra steps lead
to a constant overhead c for this encoding [22, 69]. The new total error probability becomes
ε = cp2. If cp2 is smaller than p, we have increased the probability of successfully computing
a result. This can of course be repeated, by encoding the encoded code qubits again, picking
up another factor of c for the overhead and p for the additional physical errors that we can

2For a nice proof see Ref. [22] page 532.
3Using more gates.
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tolerate. The error rate after k concatenation steps thus becomes

(cp)k

c

. We can then identify a threshold condition of the kind

(cp)k

c
6

ξ

G(n)
, (5.1)

where G(n) is the number of gates in our circuit for a problem of the dimension n. G(n)
must be polynomial in the size of n, and ξ is the final accuracy we would like to achieve.
For a concatenation level k we must achieve

p 6 pth ≡
1

c
.

The significance of this equation is that once we achieve a error probability below the thresh-
old, we can achieve any desired total error rate ξ by applying concatenated encoding. While
pth is the error per gate rate at which fault-tolerant quantum computing will be in principle
possible, the price tag of this manifold encoding—due to the required resources—is going
to influence the level of concatenations that are practically feasible. This might lead to a
feasability threshold larger than the theoretically predicted pfeasable > pth. Recently it was
found that close to the threshold, the required concatenation level blows out exponentially,
while for values away from the error threshold a significant large region exists, where the in-
crease in required encoding levels is relatively flat [72]. For practical fault-tolerant quantum
computing, the goal must be to achieve an EPG (error probability per gate) not only lower
than the threshold, but in this flat region.

A complete discussion of quantum error correction and fault tolerant circuitry is beyond
the scope of this thesis, but the inclined reader is referred to Chapter 10 of Ref. [22] and Refs.
[73, 74]. For the upcoming chapter it is sufficient to know that quantum error correction is
in principle possible and that schemes for fault-tolerant quantum computing exist.

5.3 Where do fault-tolerance thresholds come from

As diverse as the approaches towards quantum computing are, as manifold are the fault-
tolerance results thresholds. Their multitude is caused by the variety of assumptions used to
derive thresholds. It is not clear which assumptions (if any) are actually necessary to derive
the most general or even an universal threshold and while some conditions are easily met in
one architecture, they might be completely infeasible in another. A brief discussion of this
can be found in [69].

Further complication arises from the difficulty of calculating these thresholds theoreti-
cally. In some cases. a mathematically derived boundary can be proven, though commonly
at the price of very conservative assumptions, leading to thresholds that are likely to be
pessimistic. Because of the difficulties in obtaining analytical proofs, numerical simulations
are usually used to infer asymptotic values for tolerable errors. There are two problems with
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this method: it always leaves the possibility of an oversight in the model which could render
the simulation useless; and the simulations usually struggle with many concatenation levels,
thereby potentially undershooting the threshold. Nevertheless the values achieved with such
models provide a basis as to the likely order of tolerable error rates. In the past, thresholds
inferred from such simulations are usually higher than proven thresholds, commonly by a
factor of ≈ 10. A third option is an analytical approach, making assumptions about leading
contributors to error rates and mechanisms. These usually result in value between the simu-
lated and proven values, further indicating that the pegged out range appears to be correct.
A brief and recent summary of the current state of the art of fault-tolerance, with specific
details on these problems, can be found in [69].

5.3.1 The Knill error threshold

Most error-thresholds are in the range from 10−6 to 10−3, depending on the assumptions
and used methods. In 2005, a paper by Emmanuel Knill [75] stunned the community by
inferring an error threshold as high as 5−6% or 5×10−2, with the proven (through simulation)
threshold at 3%. This is the highest reported threshold value to date, and is achieved by
departing from error correction and applying an error detection code which dumps a subset
of the computation when an error is indicated. It also uses a C4/C6-architecture, where
the first level of concatenation is using 4 qubits and the further levels use 6 rather than
the common symmetric encoding. Knill points out that the code can tolerate error rates of
the same order as 1 − F for the fidelities of entangled states created in experiments with
ion-traps [76, 77]. The required resource overhead at EPG-levels close to the error-threshold
of this scheme is enormous due to the dumping, which has earned this code the nickname
”ancilla-factory”.

A further limitation of Knill’s result, like most other thresholds, is the specific selection
of allowed noise, which here is assumed to be that of a independent stochastic noise source
giving random Pauli rotations. This means that all errors are random and equally likely to
occur while there is no correlation between specific errors either in the individual gate or in
concatenated gates.

5.3.2 The general gremlin model

Like the Knill model, any other derived threshold has been gained by making some assump-
tions4 about the errors to be faced. The reason for a specific error choice is usually to make
modelling easier, as it allows more specialised compensation methods. While these methods
are in wide-spread use, these assumption can make the threshold somewhat artificial and
its application very limited. We hence ideally want the most general threshold possible.
Aliferis, Gottesman and Preskill [78] managed to prove a threshold for in a model with non-
markovian noise which allows for the most general errors. It effectively allows the actions of
a gremlin, who has complete freedom in its noise action. He can thus correlate the errors in

4More assumptions than just the error source are usually needed, i.e. the availability and relative speed
of classical computing power or the presence of abundant ancilla qubits. These will likely be architecture
dependent and solutions depend on the engineering. We thus focus here on the error sources.
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such a way that the errors of subsequent gates add coherently, maximising their impact. He
could even add entangled errors. While such coherent addition is in principle possible, it is
highly unlikely to occur without a organising force—the gremlin in the experimental imple-
mentation. This model is therefore considered a worst case scenario and the proven bound
for the error threshold of 2.73 × 10−5 can be considered a lower bound for the correctable
error threshold for a future quantum computation device.

The two introduced models, Knill’s ancilla-factory approach and the gremlin model are
current extreme cases for fault-tolerance thresholds. As the exact threshold value for fault-
tolerant quantum computing is yet to be found, we use these two results, the proven value
from the gremlin and the inferred threshold in the ancilla factory model as our upper and
lower bounds. If the achieved EPG is lower than Knill’s threshold of 5× 10−2 fault tolerant
quantum computing might be possible, while an EPG below the gremlin-threshold guarantees
fault-tolerant quantum computation.

Practical quantum computing is likely to require not only an EPG at the threshold, but
well below, in order to limit the overhead blow out that occurs near the threshold value. The
exact point at which quantum computing will become feasible will depend on the availability
and both the physical and temporal cost of the resources required for concatenated error
encoding and correction. The aim for experimental implementations thus has to be to achieve
an EPG below 2.7×10−5, but failing this, to at least surpass Knill’s threshold and then have
a closer look at the real noise sources and specific correction methods.

5.4 Bridging the gap: Comparing experimental gate

performance to the theoretical thresholds

While derived, inferred and proven thresholds are plentiful for various combinations of as-
sumptions, there has been little to no effort in relating the experimentally demonstrated
gates and their performance to the theoretically derived thresholds. One obvious cause for
this is the lack of a methodology for comparing experimental gate performance measures to
the theoretically derived threshold values. As mentioned, Knill [75] related his threshold to
the achieved fidelity of creating an entangled state in an ion-trap implementation [76, 77].
But as discussed in section 1.4.3, the fidelity of generating an individual output state can
hardly serve as a measure for the gate performance and can thus not be a rigorous value for
the EPG.

In chapter 4 we measured the performance of a linear optical entangling gate under
conditions close to those expected when attempting large scale fault-tolerant quantum com-
putation with current technology. The highly accurate model that we derived during that
chapter will give us access to the effects of real error sources. In the following we will de-
velop a method for comparing our experimental gate performance and to these fault-tolerance
thresholds. We will analyse the quality of the derived experimental error probability for our
gate and utilise our model to pinpoint the advances needed to reach the realm of fault tol-
erance with photonic quantum computing. We choose the ancilla factory by Knill and the
gremlin model of Aliferis, Gottesman and Preskill, as these present the two extreme cases as
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detailed in the previous section. In order to find suitable measures to compare the experi-
mental gates to the threshold, we will have a closer look at the individual noise assumptions
and their implications on the gate behaviour.

5.4.1 Pathfinding part I: Comparing to Knill’s threshold

To identify a suitable approach to compare our experimental gate performance to threshold
derived by Knill, it pays off to look at the assumptions Knill uses to derive his threshold.
He assumes that all errors are independent products of Pauli-opperations with an unbiased
probability distribution. What does this mean?5 First of all, if the errors are all products
of Pauli-errors, and since our representation of χ-matrices (see chapters 3 and 4) is in the
Pauli-basis, this should allow an easy comparison to our process fidelities. However we want
to be in a basis where the ideal gate operation is a single element (and not broken up in it’s
Pauli-operations) and all errors show up as additional operations. We hence rotate the basis
in which we represent the process matrix6 in such a manner that the basis vectors are no
longer the Pauli operators {I,X, Y, Z}⊗{I,X, Y, Z}, but instead the product of the desired
CZ-gate action with the Pauli-operators, CS×({I,X, Y, Z}⊗{I,X, Y, Z}). (We use here CS
as the operator for a controlled-sign gate and avoid using the CZ from the text as to avoid
misinterpretation of the Z as the Pauli Z operator. ) In this basis, the first element of the
matrix becomes the desired gate operation followed (or preceded) by the identity operation
on both qubits, which leaves it at the ideal gate operation. The (2, 2)-element (CS × IX)
now becomes the ideal gate operation followed (or preceded) by the identity operation on
qubit one, and a X-rotation (phase-shift) on qubit two. All of the diagonal elements are
subsequently the CZ-gate action followed or preceded by a combination of Pauli-errors on
one or both qubits. The off-diagonal elements in this matrix are coherences between different
processes. The ideal CZ gate operation is shown in fig.5.1a) and b), where a) is in the Pauli
basis and b) after rotation in the ”gate” basis. As this is the ideal operation, the only
population in the gate basis is in the (1, 1) element. However, if there were errors, the Knill
model demands that the errors should be independent of each other. Hence while we should
now see populations along the diagonal axis, we should not see any off diagonal elements,
i.e. coherences between the individual populations in the process matrix. Furthermore Knill
demands that the errors are randomly distributed. As our χ-matrices are reconstructed from
a large number of measurements, we should therefore expect the populations in the gate-
basis to be of equal magnitude except for the (1, 1)-element, which gives us the probability p
of having performed the gate correctly. The sum of the remaining populations should hence
yield the error probability

16∑

i=2

χi,i = εp = (1−p), (5.2)

which should be equal or less than the error threshold value

εp6ε0 = 5× 10−2, (5.3)

5I am quite aware that any inclined theorist is by now terribly bored, but this section is meant to provide
an understanding for naive experimentalists like me.

6Remembering that the choice of basis is arbitrary, Section 1.4.3
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to make fault tolerant quantum computing in principle possible.

So far we have reconstructed the χ-matrices in the Pauli-basis to allow some intuition of
the applied actions of the gate. We need to find the suitable rotation to convert our matrices
from the Pauli-basis to the gate-basis. To obtain the matrix that maps the Pauli-basis onto
the gate basis, we calculate the bit-wise tensor product of the individual basis vectors of the
Pauli-basis with the ideal CZ-Gate action. The resultant vector for the 16 individual basis
vectors are then strung together to form the matrix that transforms the Pauli basis to the
gate basis. With the bit-flipped gate operation

CS = (−II + IZ + ZI + ZZ)/4, (5.4)

the individual vectors for the transfer matrix become

II×CS =
1√
4

(−II + IZ + ZI + ZZ)

IX×CS =
1√
4

(−IX − iIY + ZX − iZY )

IY×CS =
1√
4

(−IY + iIX + ZY + iZX)

IZ×CS =
1√
4

(−IZ + II + ZZ + ZI) (5.5)

XI×CS =
1√
4

(−XI +XZ − iY I − iY Z)

XX×CS =
1√
4

(−XX − iXY − iY X − Y Y )

XY×CS =
1√
4

(−XY + iXX − iY Y − Y X)

XZ×CS =
1√
4

(−XZ +XI − iY Z − iY I) (5.6)

Y I×CS =
1√
4

(−Y I + Y Z + iXI + iXZ)

Y X×CS =
1√
4

(−Y X − iY Y + iXX −XY )

Y Y×CS =
1√
4

(−Y Y + iY X + iXY −XX)

Y Z×CS =
1√
4

(−Y Z + Y I + iXZ + iXI) (5.7)
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Figure 5.1: Process matrices of a bit-flipped CZ gate in the commonly used Pauli basis a)-c)
and after basis rotation in the gate basis d)-f). The matrices are for the ideal gate a) and d)
and those reconstructed from the experimental data b),e) and from the HLB-model c),f). The
Pauli-basis is instructive to understand the actions of the gate, while the gate-basis allows a fast
and easy analyses of non-ideal results, as the first element becomes the process fidelity, with every
other diagonal element being a Pauli-error.
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ZI×CS =
1√
4

(−ZI + ZZ + II + IZ)

ZX×CS =
1√
4

(−ZX − iZY + IX − iIY )

ZY×CS =
1√
4

(−ZY + iZX + IY + iIX)

ZZ×CS =
1√
4

(−ZZ + ZI + IZ + II) (5.8)

The transformation that we seek to imply is thus

χGate = UP2G χPauliU
†
P2G , with (5.9)

UP2G =
[
{II×CS}, {IX×CS}, {IY×CS}, ..., {ZZ×CS}

]
(5.10)

Applying this transformation to the ideal χ-matrix of figure 4.11, we obtain the matrix
for the ideal CZ-Gate in the gate-basis. This matrix is 1 in the (1, 1) element and 0 elsewhere,
indicating that the only process that is occurring is the perfect CS gate action. We can see
immediately that the overlap of this matrix with any other matrix is simply the value of the
(1, 1) element of the second matrix. As the overlap of the ideal gate action with the χ-matrix
of another process is defined to be the process fidelity, we can identify the value of the first
element of any χ-matrix in this gate basis to be the process fidelity with the ideal CZ-gate.

The graphical representation of the χ-matrices shown in figure 5.1 displays the real parts
of the ideal a),d), the experimental b),e) and the modelled c),f) data before a)-c) and after
d)-f) the transformation. As discussed above, any population except for the (1, 1) element is
an undesired gate operation and can thus be ascribed to noise and the population elements
(representing additional Pauli rotations) reveal the actions of the encountered noise. While
it might not bear much comfort to the experimenter to see the individual effects of errors,
it leads to an open and interesting question of whether an optimal correction exists for the
measured noise, which might tolerate an even higher EPG. An indication of this is a recent
paper by Aliferis and Preskill [79], which yields a higher threshold for a certain model if, in
this specific case, phase errors dominate by several orders of magnitude.

After the transformation we can read off the probability of incorporating the desired CZ
gate action as the population of the first element for both the model and the experiment that
we discussed in chapter 4, which, as expected, equal the previously found process fidelities
of 78.2% for the experimental data and 81.4% for the model. As any population that is not
in the first element of the matrix is an error in the Knill model, we can identify the error per
gate probability p as the part of the process fidelity (population of the first element) missing
to 100%, thus

Fp = (1− p)
p = 1− Fp. (5.11)

The values of pexp = 21.8% and pHLB = 18.6% (see table 4.5) are considerably larger than
the tolerable 5% EPG found by Knill. As we already observed in the previous chapter,
switching off individual error sources drastically increases the process fidelity with the ideal
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operation. We use this capability to now estimate the EPG rates that could be achieved with
technological advances that eliminate the error arrising from an imperfect photon source.
Using Eq.5.11 and the third column of table 4.5, we can immediately read off the error
probability for the various combinations of errors. It is worthy noting that losing one photon
in this post-selection based method would not yield any errors if we had either perfect
sources or unit efficient number resolving detectors. Thus eliminating multi-pair emission
effectively remedies two error sources and thus allows an instantaneous leap to an EPG of
2.8% caused only by the wrong beamsplitter reflectivity puts this approach on the doorstep
to fault tolerant quantum computing. As noted in Chapter 4 the model does not consider
mode mismatch, which was attributed with the discrepancy between the model and the
experimentally determined χ-matrices (3.2%). We thus expect that the elimination of the
multi-pair emission error source will leave optical quantum computing with an combined
EPG of 2.8+3.2%, which still leaves us with an EPG in the vicinity of fault-tolerant quantum
computing. Clearly there is also no physical reason, why the reflectivity of our PPBS need
to deviate from the ideal7 and as discussed in Chapter 3, the set of PPBSs in the cw gate
at the PDC wavelength for the Ar+-laser were ideal within measurement accuracy. It is
thus feasible that this specific error source could also be eliminated, leaving only the mode-
missmatch, p = 3.2%, as the governing error source. This would put the EPG of optical
quantum computing in the range where fault tolerant quantum computing could be possible.
Whether it would be feasible would depend on the specific conditions at hand, especially the
cost of adding ancilla qubits and the associated operations, especially in the light that the
demonstrated optical gates are non-deterministic.

5.4.2 Testing the fault tolerant conditions

It is important to check the consistency of our experimental results with the assumptions
made by Knill to derive his model. The main assumption was that the errors should be
independent random Pauli rotations. As acknowledged above, the gate basis allows imme-
diate appreciation of the occurring noise in terms of Pauli errors. This also reveals that the
distribution is not random, as there are specific errors (IZ, ZI, ZZ) that dominate.

Furthermore coherences between individual error terms become immediately apparent
in the gate-basis representation. A brief inspection of both the experimental and modelled
process matrix (Fig. 5.1) e) and f)) shows not only populations indicating the predominant
errors to be any additional Z rotations on the gate, i.e. IZ, ZI, ZZ but also significant
coherences between these noise populations and the ideal gate action, as well as with the
other noise terms. With coherences it is however not the magnitude themselves that holds
all the information about the strength or degree of coherence, as the maximal value for a
coherence is given by the product of the square roots of the respective populations, using the
complex conjugate of one of the two. While this gives the maximal strength of the coherence,
this value will be a small, if one or both of the populations are small. Nevertheless, the degree
of coherence between the two populations might still be significant. We define the degree of
coherence as the ratio between the maximal value for a given coherence and the observed

7Clearly achieving the correct beamsplitter reflectivities is a problem of the kind Quality ∝ log(Money)
clearly showing that there is no physical reason why the ideal reflectivity can not be achieved.
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value. To calculate the degree of coherence matrix we calculate

Cij = |χij|(1− δij)/
√
χiiχjj, (5.12)

where i, j are indices of the χ-matrix. Entries in the resulting coherence matrix vary between
0, no coherence, and 1, maximal coherence. The coherence matrix for the experiment is
shown in Fig. 5.2 a), clearly showing non-zero coherences everywhere. It is noteworthy that
the coherences of the ideal operation with any error term is relatively low. The coherences
between the IZ and the other dominant errors ZI, ZZ are above average, but the degree
of coherence between the ZI and ZZ error and, surprisingly, the ZX and ZY error are
unsurpassed—they are nearly perfectly coherent! Remembering that coherences show how
populations got redistributed, we can identify that this would result from phase shifts, Z
rotations, added onto identity operations as Z ⊗ I → Z or onto X-rotations (Z ⊗X → Y ).
The other significant coherences appear on terms that relate to the primary error terms
identified earlier, with an additional phase shift (Z) on one or both of the qubits. As the
Z-rotation is a coherent process, it is not surprising to find strong coherences in these terms.

Figure 5.2 b) is the degree of coherence matrix as predicted by the model. While similar
patterns can easily be identified as in the experimental degree of coherence matrix, the
general level of coherence is significantly higher than in the experimental data set. Since
so far we observed outstanding agreement between the model and the experiment, we now
have to ask what gives rise to the large discrepancy in coherences. We start by looking at
the degree of coherence that occur due to the individual error terms of the model.

Looking only at the effects of the imperfect circuitry in the model (as discussed in sec-
tion 4.4, with the degree of coherence matrix shown in figure 5.2 c)) we can see that the errors
caused by this kind of noise are highly coherent. As the imperfect beamsplitter reflectivity
can also be described as a slight rotation of the output state, this is by no means surprising.
On the other hand, the multi-pair emission causes errors by giving rise to processes that
would and could not be populated otherwise8. As there is generally no rotation that allows
us to obtain the states obtained due to the multi-pair emission, the degree of coherence of
these errors is low. We find exactly this behaviour for this kind of error, as can be seen in
figure 5.2 d). The only terms that have significant coherences in this modelled result are
the ZI and ZZ, the ZX and ZY and the ZZ and ZI terms. These are exactly the terms
that have the most significant coherences in the experimental data set, hinting again that
the multi-pair emission appears as the leading error source in optical quantum computing.

While this inspection was highly instructive, it has not explained the discrepancy between
the full model and the experiment. We must hence conclude that of the modelled errors could
lead to the lower coherence, but remembering the discussion of the details of the model, we
see that the model was designed to account for higher order pair emission, wrong beamsplitter
reflectivities and photon loss. The only known error source that was not included was mode
mismatch. Mode mismatch causes distinguishability between the photons which leads to
the lack of coherent interaction9. Therefore by definition the action of mode mismatch is

8The effect of loss is mainly a scaling effect on this multi-pair behaviour and will not be discussed
individually here.

9It also allows some coherent, but incorrect operation, i.e. the passing of a vertically polarised photon
instead of perfectly reflecting it is clearly coherent.
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Figure 5.2: Coherence matrices showing the degree of coherence for a) the experiment, b)
the full model, c) modelling only the effect of imperfect circuitry and d) modelling only the effect
of higher order photon numbers. Coherence values vary between 0, no coherence, and 1, full
coherence. The coherence patterns of the experiment and model are similar: as the experiment
suffers decoherence due to mode mismatch we expect it to have lower coherences than the model,
as is observed. c) and d) highlight that, while the effects of non-ideal circuitry is highly coherent,
the errors due to the non-ideal source are not.

incoherent. We thus expect that even small amounts of mode mismatch lead to the loss
of coherences between the processes. Since it is observed that the experiment suffers from
additional10 mode-mismatch, we expect the experiment to have generally a lower degree of
coherence than the complete model.

5.4.3 Summary for the Knill model

We have learned that rotating the process matrix into the gate-basis instantaneously reveals
the kind of errors faced and gives first clues at the coherence of the processes. However as
gates continue to be optimised, and their performance approaches the ideal, the graphical
representation is going to be dominated by the first element which also gives the process

10Additional to the error sources modelled.
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fidelity. What remains challenging will be to appreciate the degree of coherence between the
ever increasing process fidelity and the decreasing error populations and of course between the
error populations themselves. We therefore introduce the degree of coherence matrix, which
gives an easy representation of the level of coherence relative to the individual maximal
value. By inspecting the graphical representation of these new methods, we can see two
things immediately which contradict the assumptions used for Knill’s ancilla factory:

• The distribution of errors is not random, the Pauli-errors do not occur with equal
likelihood.

• The occurring Pauli errors are not independent. While the process matrix in the gate
basis already reveals some coherences, the degree of coherence matrix resolutely rebuts
this assumption.

We therefore have to conclude that while it is relatively easy to derive the experimental
EPG value for comparison with the Knill threshold, the threshold itself does not apply to
the current gates and their intrinsic noise sources in optical quantum computing.

5.4.4 Pathfinding Part II: How to compare to the gremlin thresh-
old

While the comparison of the gate performance to the Knill model is rather straight forward,
as it is directly related to the process fidelity, we also noted that the chosen error model is
so specific that it is unlikely to apply in general and indeed does not apply for our specific
gate. As the gremlin model made absolutely no assumptions on what errors would occur, a
comparison to the threshold for this model is very desirable. The model permits any error
that can be written as a completely positive process. We can decompose the experimentally
determined χ-matrix into the gremlin process and the ideal process, so that

χexp = pχgr + (1− p)χideal. (5.13)

To avoid the unhelpful solution that our implemented process is, while sharing some overlap
with the desired process, just simply always wrong, we need to describe the action of the
gremlin as the kind of action that leads to the observed statistical behaviour, but gives a
process with very low overlap with the ideal in the few cases where the gremlin acts. In
summary instead of having the gremlin always cause a small error, we find the situation
where the gremlin acts in the least amount of cases, but then with the strongest possible
error. Thus altering the kind of gremlin process so that we minimise p in this equation finds
the minimal error probability for the gate, which we will label p∗. A visualisation of this
method is given in figure 5.3. By choosing a process for the gremlin process that is as far
away from the ideal process as possible, we minimise p, and thus optimise the EPG, as the
distance from the ideal process can be linked to the process fidelity, thus the further away
two process are in our visuallisation the lower the fidelity between these two processes. The
ideal decomposition finding the p∗ that minimises the contribution of the gremlin process
will thus use the gremlin process that lies on the boundary of the space of completely positive
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Figure 5.3: Visualisation of the minimisation of the contribution of the gremlin process. All
three processes, the ideal, the gremlin and the experimental live necessarily on the space of the
physical processes, which is bounded by processes that have at least one zero eigenvalue. Further
reduction of this eigenvalue would led to a negative eigenvalue and thus an unphysical process.
The ideal process has a zero eigenvalue and thus lies on the boundary. In a) the measured physical
process has all eigenvalues larger than zero and lies inside the physical process space, not touching
the boundary. By selecting the gremlin process that lies as far away from the ideal process and inline
with the experimental and ideal process, the magnitude p of the contribution of this error process
is minimised. b) The maximum likelihood reconstruction technique recreates the experimental
process inside the space of the physical processes by setting any negative eigenvalues to zero. The
processes hence lie on the boundary, and no gremlin processes can be found that lie inline with the
ideal and experimental process that is farther away from the ideal than the experimental. Thus
the only conclusion would be that the gremlin is always active, meaning the Error probability per
gate goes to p = 1 and we always implement the wrong process.

processes directly adjacent to the ideal process and inline with the measured experimental
process as shown in figure 5.3a)

We thus seek to decompose χexp into (1−p)χideal + pχgr where p is the probability of a
gremlin reducing the gate to an arbitrary (and possibly adversarial) quantum process χgr.
We want to find the minimum-p, p∗, such that χgr still represents a physical, trace-preserving
process - that is, we require that all eigenvalues are non-negative and that TrAχgr = I/d11

11Remembering from Section 5.3.2 that we want to assume the worst possible case. Hence we are allowing
the Gremlin to perform entangling operations and thus use the partial trace here.
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The optimisation we need to solve is then the following,

min p, such that pχgr=χexp−(1−p)χideal≥0 (5.14)

Note that since both χexp and χideal represent physical process matrices, the partial-trace
condition for χ matrices is automatically satisfied and has been omitted12. This optimisation
is in the form of a semidefinite program, which is a convex optimisation problem, which enjoys
several advantages, such as being particularly amenable to numerical solution, and that every
local optimum is a global optimum [80].

The primal optimisation of eq. 5.14 possesses a dual optimisation problem

max d=TrχidealZ−TrχexpZ,

such that Z≥0, TrχidealZ=1 (5.15)

where the optimisation variable is a Hermitian matrix Z. The primal and dual problems
are related by a condition known as weak-duality, which asserts that any solution p of the
primal problem is always greater than a solution d of the dual problem, and in particular
these sandwich the optimal solutions p∗ and d∗: p ≥ p∗ ≥ d∗ ≥ d.

The dual problem can often be used to derive lower bounds on the primal optimum. For
instance, the trial solution Z=χideal is a valid solution, and hence p∗≥d=1−Fp. In general
this solution is not optimal so the bound is not saturated, this can be seen by checking the
conditions for the primal problem when p=1−Fp. The bound is saturated if, in the gate
basis, the first element of the χexp, corresponding to Fp, shares no coherences with any other
element, making p∗=1−Fp the optimal solution as is the case in Knill’s ancilla factory.

While in principle the solution of this optimisation problem is a fast numerical problem,
in practise there is a significant difficulty which arises from the way the process matrices
are derived from the experimental data. Due to the noise commonly encountered during
measurements, the reconstructed processes are typically non-physical. To prevent the recon-
struction of such unrealistic processes, a technique called maximum likelihood is employed
[29], which finds the closest (thus most likely) physical13 process that would have led the
obtained data set. If initially the process would have been unphysical, maximum likelihood
will converge on a process that lies on the boundary between the physical and unphysical
processes. The boundary has the, in this case unfavourable, attribute that at least one
eigenvalue of the process is equal to zero. Conversely, any process that possesses at least one
zero eigenvalue exists on the boundary of the space of the completely positive processes and
the non-physical processes, as any further decrease of the zero eigenvalue would violate the
positiveness and thus place this process outside the space of physical processes. In this case,
decomposing the experimental matrix in the ideal and the gremlin matrices no longer yields
sensible results, as the χgremlin can not be chosen to be more distant to the ideal than the
reconstructed χexp and thus the only way to satisfy the primal condition of equation 5.14 is
to let p = 1 and thus χgremlin = χexp. This means that we always encode the wrong process,
and never the ideal, and that the minimal error per gate probability p∗ is bound from above
by 1—Clearly not a useful bound.

12The sum of two physical processes is necessarily a physical process
13Processes are physical if all eigenvalues larger or equal to zero.
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Figure 5.4: Derivation of the upper and lower bounds for the error-probability per gate p∗

through the addition of deliberate noise with varying strength δ, so that the reconstructed experi-
mental process, is of the form (1−δ)χexp+δχnoise. The lower bound (straight dashed line) is 1−Fp.
The dashed curve results from adding depolarising noise, the solid curve from optimising the form
of the noise. These curves are upper bounds on the true p∗ since we are deliberately adding extra
noise to the experiment. a) For the experimentally measured gate shown in Fig. 5.1b),e), the error
per gate probability is bound by 21.8%≤p∗≤48.8%. These bounds reduce drastically as shown in
b) when assuming true single photon sources as in the modelled gate shown in Fig. 5.1c),f), the
bounds improve to 2.8%≤p∗≤13.2%.

To overcome the trivial solutions imposed by the zero eigenvalues in the reconstructed χ
matrix, we deliberately add noise to the process. By choosing the noise so that it could be
generated and added with high fidelity in the lab, the resulting p∗ will be an upper bound
for the error probability per gate of our investigated gate, as we could add this noise in
practice, and any additional noise will necessarily further dampen the process fidelity with
the ideal unless the implemented process was close to orthogonal to the ideal process. We
will consider noise generated by the following procedure — with probability δ we replace
the gate output with a fixed state. If we use the maximally mixed state, the added noise is
depolarising noise, shown as the dashed curve in figure 5.4. In general we will optimise over
the fixed state for this noise process χnoise, still leaving the entire optimisation, strength and
kind of noise, as well as gremlin process, as a semi-definite program. In figure 5.4 we plot
the upper and lower bounds. The lower bound for the process fidelity is shown in the dashed
straight line, while the upper bound for the optimised noise is the solid curve. The lowest
point of this curve, irrespective of noise strength δ becomes then the upper bound for our
experimental EPG. Figure 5.4a) shows these bounds for the experimental state derived in
Chapter 4, finding the EPG bound by 21.8% 6 p∗ 6 48.8% (shaded region on the side of the
graph). Obviously the upper bound of the EPG is significantly worse than the 1 − Fp our
lower bound. Paired with the much tighter threshold value of pth = 2.73 × 10−5 the hopes
of fault tolerance in the near future seem relinquished. Applying the same methodology
as above to our model described in the previous chapter and again hoping for the timely
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development of single photon sources, we find the bounds for the error probability for the
modelled gate. The corresponding graph is shown in figure 5.4b). We find that the EPG is
now bound much tighter with 2.8% 6 p∗ 6 13.2% and also note that we have to add much
less noise to find the upper bound. Again the upper bound is still outside the threshold
value derived by Knill. We note though that the bound has become much tighter, spanning
only 10.4% compared to the 27.0% for the experiment. Also the fact that we have to add
noise to find sensible bounds indicates that the real bounds might be much lower, if the
reconstructed states would not commonly be reconstructed on the boundary. One technique
that might circumvent this is based on Bayesian analysis. However, this technique is not yet
in widespread use [81]. Nevertheless our procedure described here allows the direct estimation
of the gate errors for any given experimental gate, irrespective of its architecture. We expect
a much tighter upper bound if the problem of zero eigenvalues can be solved. Together with
the architecture-dependent modelling introduced in the last chapter, we expect this technique
to become of major importance in identifying required technological improvements en route
to quantum computing with any architecture. Furthermore it allows direct comparison to
the fault tolerance thresholds, and thus closes this gap between experimental and theoretical
work in this field.

5.5 Summary of this chapter

• We have discussed two different thresholds for fault tolerant quantum computing and
developed tools that allow the comparison of experimental gates to these thresholds.

• Error probabilities per gate for modern optical gates are many standard deviations
away from the fault tolerance thresholds.

• Making use of our model developed in Chapter 4, we infer that alleviation of the multi-
pair emission problem will render optical quantum computing within striking distance
of the fault-tolerance threshold as derived by Knill.

• The ramification of current source problems and the application of high precision optics
would lead to mode mismatch becoming the leading error source. As mode mismatch
causes random and uncorrelated errors, the Knill threshold would apply. Specifically
such gates are already today within reach of this fault tolerance threshold, albeit right
near the limit, requiring by far more resources than readily available.
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Tackling Shor’s algorithm

In this chapter the gates developed during chapters 3 and 4, paired with the understanding
that we gained from our model developed in chapter 4 about how different error sources af-
fect the gate, allowed us to complete a successful implementation of the three qubit gate we
initially attempted in chapter 4. Such a gate allows us to implement a proof-of-principle im-
plementations of Shor’s algorithm [2] to factor the smallest non-trivial number: 15. Further
this experiment was made possible by the discovery of compiling techniques, which reduce
the number of required qubits. Thus we were able to evaluate the order finding routine,
which is at the heart of Shor’s factoring algorithm with two different co-primes 2 and 4,
with two two-qubit gates and one three qubit gate respectively. While we achieve near ideal
algorithm performance (fidelity of the output state with the expected output state), a closer
analyses of the states during the computation indicates lower performance values.

The experimental implementation was conducted by Marco Babieri, Nathan Langford,
Ben Lanyon and myself (in alphabetical order), while data analyses was conducted by Nathan
Langford and Ben Lanyon. The original idea for the compilation steps stemmed from Prof.
Daniel James (University of Toronto) and was further developed by Marco Barbieri, Alexei
Gilchrist and Andrew White. Simultaneous with our publication a group from Hefei, China
independently implemented the three qubit circuit [82] as well. Both papers have been
published back to back in Physical Review Letters.

6.1 Shor’s algorithm, the (not so) basics

One of the most intriguing attributes of a functioning quantum computer is the capability
of executing Shor’s factoring algorithm, which allows the breaking of a number of widely
used classic encryption codes. These codes in general rely on what is known as a trap door
function, that is a function that is easily executed in one direction, but difficult to reverse. In
this case the function is multiplying and factoring of numbers. While it is relatively easy to
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multiply two numbers, even if they are very large, finding the two prime factors to a number
is very difficult. In fact, factorising a number into its prime factors is exponentially difficult
on a conventional classic computer, meaning that the number of computational steps to solve
the problem scales exponentially with the bit length of the input value. This means that
with a modest increase in bit length the time to decipher a code increases exponentially. This
feature guarantees the pseudo-security of the standard encryption protocols used in every
day live, i.e. for internet banking, as when ever the computing power of classical computers
is increased, reducing the time to break the encryption, the strength of the encryption can
be increased by a manifold with the same increased computing power. While it is not proven
that factoring is necessarily exponentially difficult with classical algorithms, extensive efforts
to find an algorithm scaling polynomial in the input bit length have failed and thus such an
algorithm is now believed to not exist.

Utilising the weirdness of quantum mechanics, namely the capability of entangling the
individual qubits gave rise to what is now known as Shor’s algorithm. By entangling the
qubits, one can effectively query all possible solutions of the factoring problem simultaneously
and at the end of the routine use the interference of the phases of the qubit to cancel
out everything but the one solution and it’s multiples. The algorithm consists of multiple
computational steps, but only one of them requires the aid of quantum computing to gain
the computational advantage. The required quantum routine in Shor’s algorithm consists
of three parts: the circuit initialisation, modular exponentiation and the inverse quantum
Fourier transform (QFT). The qubits utilised during the computation are split into two
groups, the argument and the function register. During the initialisation state the argument
register is placed into an equal superposition of all possible states, which requires a single
qubit Hadamard-gate to be applied to each qubit, in linear optical quantum computing this
is simply a waveplate as mentioned in section 1.5.2. The function register is then initialised
in the |1〉f state. This means that all qubits are set to their logic |0〉 value, except for the
last qubit, which is set to |1〉. After the initialisation, the argument and function register are
entangled via subsequent application of the unitary action of the modular exponentiation
function, U , transforming our input state

|ψ〉in =
2n−1∑

x=0

|x〉a|0〉⊗m−1
f |1〉f , to (6.1)

U |ψ〉 =
2n−1∑

x=0

|x〉a|CxmodN〉f . (6.2)

Here C is a co-prime to N the number we are seeking to factor. After creation of this complex
state, a inverse quantum Fourier transform is performed on the argument register followed
by measurement of the argument register, which effectively identifies the periodicity of the
function, thus revealing the order r, satisfying

CrmodN = 1, (6.3)

which allows us to find the prime factors of N as the greatest common (non-trivial) divisors of
N and Cr/2±1. Details on the Quantum Fourier Transform and the modular exponentiation
can be found in Ref. [22].
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Like all algorithms, the required resources scale with the size of the input problem, and
Shor’s algorithm is no exception. Implementation of all steps of Shor’s algorithm to factor
a number N which is k-bits long when expressed in binary, requires 72k3 elementary gates
acting on 5K + 1 qubits [83]. The first meaningful number that can be factored with Shor’s
algorithm is 15, as it is the first number where its prime factors do not include the trivial
solution 1. As 4 bits are required to encode the number 15, this would mean 4608 gate
operations acting on 21 different qubits to implement the smallest general version of Shor’s
algorithm. As all quantum computing architectures are currently limited to only a few gates,
and trapped ion quantum computation has achieved the largest entangled state at 8 qubits
[84], 4608 gate operations as well as control over 21 qubits are still well beyond the grasp of
experimental quantum computing.

The resource blow-out is, in part, caused by the fact that the modular exponentiation
function depends on the number to be factored and the chosen co-prime C. To have a
circuit that can thus accommodate this step for any given choice of values for C and N
up to the maximum bit-length that can be encoded, then the circuit needs to be extremely
flexible and thus much more complex than strictly necessary for an specific individual set
of C and N . Thankfully ref. [83] not only derives this dooming resource demand, but also
indicates a way of circumventing it, while not compromising the validity of the results, nor
requiring any knowledge not usually available when tackling a factoring problem. It uses
the publicly known number N that we are desiring to factor and the chosen co-prime to
reduce the demands on both the available qubit number and gate operations by compiling
the circuit, so that only the essential operations are conducted. This kind of compiling is
essential to reduce the resources to a level that allows a proof-of-principal experiment and
even then limits us to the simplest cases. The only demonstration of Shor’s algorithm so
far was demonstrated in a nuclear magnetic resonance (NMR) experiment [85]. There is
a significant shadow of doubt over this implementation due to the NMR technique being
incapable of preparing pure states [86] and the fact that the dynamics can be modelled
classically [87]. This means that the entanglement at the core of the algorithm can not be
implemented in NMR.

In the paper at the end of this chapter, we present two different implementations of Shor’s
algorithm using different levels of compiling. Both versions allow us to factor N = 15, and
implement the only two relevant co-primes C = 4 and C = 2 for the choice of N = 15.

6.1.1 Compiling the circuit for C = 4

To determine the minimum size of our argument register, we need to identify the maximum
value of x in our function y(x) = CxmodN . Equally, the maximum value of y(x) determines
the required size of our function register. A further requirement for the argument register
is determined by the QFT. To find the periodicity of a function with certainty, we need to
observe a minimum of two full periods. For the specific choice at hand (C = 4, N = 15), we
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thus evaluate the function and find

y(0) = 40mod15 = 1,

y(1) = 41mod15 = 4,

y(2) = 42mod15 = 1,

y(3) = 43mod15 = 4. (6.4)

By inspection we see that our argument register needs to be able to count up to 3, requires
two bits (0 → 00, 1 → 01, 2 → 10, 3 → 11), while our function register needs to be able to
count up to four, which requires three bits (0→ 000, 1→ 001, 2→ 010, 3→ 011, 4→ 100).
While experiments with gates between five photonic qubits have been demonstrated and
up to six qubits have been demonstrated [88], the difficulty of generating, controlling and
measuring five single photons is orders of magnitude harder than four photons, mainly due
to the statistical nature and low efficiency of PDC as our photon source. Noticing that our
function register only encodes two different values, 1 and 4, and that the binary codes for
these numbers equal 001 and 100, we realise that no information is encoded to the central
bit, which makes it redundant, allowing us to reduce the number of required qubits to four,
two in the argument and two in the function. To identify the suitable circuit for the modular
exponentiation, we inspect the desired state prior to the QFT and compare it to our input
state.

As mentioned previously, the circuit initialisation leaves the argument register in a su-
perposition of all possible values, while the function register is encoding the value 1. Thus
our state prior to the modular exponentiation is

|ψ〉in = (|00〉a + |01〉a + |10〉a + |11〉a)|01〉f , (6.5)

where we have omitted the central (qu-)bit and also omitted normalisation as by convention.
The state before the QFT should replicate the values of our argument and function register
from equations 6.4, and thus should be

|ψ〉out = |00〉a|01〉f + |01〉a|10〉f + |10〉a|01〉f + |11〉a|10〉f . (6.6)

A quick inspection of the input and output state reveals the required logic operations to be
two controlled-NOT operations, which are triggered when the second qubit in the argument
register assumes the value 1.This converts the function register from the initial |01〉f state
to the desired output state |10〉f . It now becomes clear that if we had used the three qubit
set to encode our function register that the state of the omitted central qubit would not be
affected at any stage during the routine, as the final QFT acts solely on the argument register.
Similarly the first qubit of the argument register never interacts, except for a swap gate with
the second argument register qubit at the end of the circuit. This swap is implemented as
a simple relabelling of the respective argument qubits in the circuit diagrams. However,
as we generate four photons through the two PDC processes experimentally, we use the
fourth photon as a trigger signal for the logic operation. This trigger photon, which never
interacts with any other photon can be viewed as the unaltered first qubit of the argument
register. practically this trigger photon improves the gate performance as it eliminates multi-
photon events where two pairs are created in the direction that contributes two gate inputs.
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Figure 6.1: a) Required logic circuitry and b) experimental implementation of the modular
exponentiation in Shor’s algorithm with C = 4 and N = 15. We have included the swap gate
between the argument register qubits, making the upper qubit the second qubit in the equations
6.5,6.6. Only the second (upper) qubit in the argument register triggers logic operations on the
function register, namely a controlled-NOT operations on both of the function qubits. Technically
the function register consists of three qubits, but as the state of the middle qubit is never affected
and thus always zero, it is replaced with a virtual qubit and omitted here. The experimental
implementation uses the simplified concatenated gate introduced in chapter 4. The mode labels C
and T identify the logic qubits for the CNOT operation, where C is the control, thus the argument
qubit, with the two target qubits (T) being the function register. On all outputs we have a
complete polarisation analyser (not shown) consisting of a λ/4 and λ/2 waveplate and a polarising
beamsplitter that allows us to perform full tomographic characterisation of the states.

Without the trigger detection of the second down-conversion direction, this process, that is
just as probable as the desired one pair in each direction event, could generate a threefold
coincidence event after the gate that could not be differentiated from the desired gate action.
Hence the detection of the fourth photon lowers our count rates due to the non unit collection
and detection efficiency but improves the gate performance as it allows the discrimination
of some undesired multi-photon events. If one wanted to encode all five qubits, the omitted
central function register qubit could be implemented by a classical laser beam with fixed
polarisation and since it is never interacts will always yield the initial value, which is |0〉.
The required logic gate structure and its physical implementation are shown in figure 6.1 or
in the copy of the published paper at the end of this chapter as figure 1d) as part of the
more detailed logic evolution to which the reader is also referred to at this point.

6.1.2 Compiling the circuit for C = 2

When we chose the co-prime C = 2 to factor 15, our function values change likely meaning
that we will need a different range for our argument. Thus evaluating the function y(x) =
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CxmodN again until we observe two full periods, we find

y(0) = 20mod15 = 1,

y(1) = 21mod15 = 2,

y(2) = 22mod15 = 4,

y(3) = 23mod15 = 8,

y(4) = 24mod15 = 1,

y(5) = 25mod15 = 2,

y(6) = 26mod15 = 4,

y(7) = 27mod15 = 8. (6.7)

From inspection we see that we need both a larger function and argument register, as we
will need to encode up to the values of seven and eight respectively. This would require
three and four qubits each—a total of 7 qubits. As discussed earlier in this chapter such a
number of photons is unfeasible with current technology. We again inspect the input and
output states to identify redundant bits to reduce the number of actually required photons.
The input state is thus

|ψ〉in = (|000〉a + |001〉a + |010〉a + |011〉a + |100〉a + |101〉a + |110〉a + |111〉a)|0001〉f , (6.8)

while our desired output state is going to be

|ψ〉out = |000〉a|0001〉f + |001〉a|0010〉f + |010〉a|0100〉f + |011〉a|1000〉f +

|100〉a|0001〉f + |101〉a|0010〉f + |110〉a|0100〉f + |111〉a|1000〉f . (6.9)

This time there are no redundant bits and the required logic also appears to be significantly
more difficult due to the extended length of the period. To reduce the resource requirements
we realise that instead of evaluating the function y(x) = CxmodN , we can evaluate y(x) =
logC(CxmodN) As we use the value of the co-prime as the basis for the logarithmic function,
this does not alter the periodicity of the function, which is the essential piece of information
that is being computed. The required values for this function then become

y(0) = log2(20mod15) = 0,

y(1) = log2(21mod15) = 1,

y(2) = log2(22mod15) = 2,

y(3) = log2(23mod15) = 3,

y(4) = log2(24mod15) = 0,

y(5) = log2(25mod15) = 1,

y(6) = log2(26mod15) = 2,

y(7) = log2(27mod15) = 3, (6.10)

which reduces our function register size from four down to two bits. We again look at the
output state and see that

|ψ〉out = |000〉a|00〉f + |001〉a|01〉f + |010〉a|10〉f + |011〉a|11〉f +

|100〉a|00〉f + |101〉a|01〉f + |110〉a|10〉f + |111〉a|11〉f . (6.11)
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Comparing this with the reduced input state (using |01〉f rather than |0001〉f ) we can see
that we need to switch the value of the first qubit in the function register (counting left
to right) when the second qubit in the argument register assumes the value 1, and the last
qubit in the function register needs to be switched whenever the last qubit in the argument
register is of value 0. This is the inverse of the common CNOT logic. We can always flip the
value of the last qubit of the function register prior to any gates, which allows us then to use
the conventional CNOT logic, flipping the state of the target qubit whenever the control is in
the logic 1 state. Either way, we see that the state of the first qubit in the argument register
does not alter the required logic and thus does not need to be encoded and measured here.
All these measures combined allow us to reduce the required number of qubits from seven
down to the much more feasible four. The logic gate is shown schematically in figure 6.2 and
in the paper in figure 1g), and the details and results of the experimental implementation
are given in the copy of the published paper at the end of this chapter.
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Figure 6.2: a) Required logic circuitry and b) experimental implementation for Shor’s algorithm
with C = 2 and N = 15 when encoding the function y(x) = logC(CxmodN). We need two separate
CNOT-gates, one between the first argument (C1) qubit and the first function (T1) qubit, while the
second gate acts between the second qubits of the individual registers. Experimentally, despite this
requiring four qubits, we only need non-classical interference between two sets of two qubits. As
this can be realised as two CNOT gates between photons from dependent pairs, this is a much easier
circuit to achieve high performance in than the C = 4, N = 15 case, that required non-classical
interference between independently generated photons. All outputs have a complete polarisation
analyser (not shown) consisting of a λ/4 and a λ/2 waveplate and a polarising beamsplitter allowing
full tomographic characterisation of the states.
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6.1.3 A note on scalability

The inclined reader will have noticed that the compilation techniques used require the user
to know exactly which number he wishes to factor, and then has to devise the appropriate
encoding technique and ultimately the appropriate circuit. Hence as it is presented here, this
implementation of Shor’s algorithm can be seen as an island solution. To be able to build a
circuit that can encode all possible numbers in the register, requires many more qubits and
many, many more gates than is currently feasible (See the intro of the paper for references).
The experiment demonstrated here should be taken as a proof of the functionality of Shor’s
algorithm and the compilation technique.

6.2 Reprise: Building 3 qubit gates, the right way

Our inspection of the requirements for implementing Shor’s algorithm revealed that we will
need at least one three qubit gate. As our initial attempt of building such a three qubit
gate produced low fidelity results, Shor’s Algorithm is going to remain very challenging.
The initial failure to produce a high fidelity three-qubit gate led to our investigation of
the independent photon gate as a subpart of this gate (Chapter 4). We realised, with
assistance from our model, that the main source of gate degradation was the emission of
additional pairs of photons into the collected spatio-temporal modes. We also discussed
in section 2.1.2 that the efficiency of generating one pair scales linearly with the power,
while generating two pairs is quadratic in the pump power. We use equation 4.1 describing
parametric down-conversion, but instead of the interaction Hamiltonian given in eq. 4.2 we
utilise the interaction Hamiltonian describing only a single down-converter.

H = Af f1
†f2†pf . (6.12)

Using the Taylor expansion up to the third order, we find

∣∣ψ(t)
〉

= 1 +
it

~
(
Af f1

†f2†pf + A2
f f1
†2f2†2p2

f/2 + A3
f f1
†3f2†3p3

f/6 + ...
)∣∣ψ(0)

〉
. (6.13)

We can see that the ratio between the adjacent orders of simultaneous down-conversion events
is proportional to the amplitude Af of the down conversion, which in turn is proportional to
the pump power. We can therefore influence the ratio of single pair emission to multi-pair
emission by reducing the pump power. Usually the aim in most multi-photon experiments
is to increase and maximise the power with which one pumps the PDC process, in order
to maximise the number of available pairs per second, and thereby speed up experiments.
However, we realise through these results, that such action leads to degradation of the gate
performance due to the increased rate of multi-photon events. In order to reduce the impact
of the multi-photon pair emission and thus make our three qubit gate for Shor’s algorithm
feasible, we reduce the pump power and accept the resulting longer acquisition time.
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6.3 Experimental demonstration of Shor’s algorithm

with quantum entanglement

6.3.1 Unpublished results

Section 6.3.3 provides the paper published in Physics Review Letters and therein contains
details and results of the experiment. It is followed by the additional online material which
offers a detailed discussion why the QFT can be omitted in the cases we implemented. While
not noted above, the circuit for C = 4, N = 15 can be further compiled by applying the
same further encoding of the function as utilised in the C = 2 case (y(x) = logC(CxmodN)).
This is shown in the paper in figure 1f), but is not discussed there. Analysis of the results
leads again to perfect results for the algorithm within the error margin, as this reduces the
circuit to a single CNOT gate. Through the reduction of the pump power we managed to
achieve a tangle of 90.6± 0.8%, which is the highest tangle created through a gate in linear
optical quantum computing. The density matrix of the state is shown in figure 6.4, fidelity
with the |φ+〉 state, which is the ideal output state is F = 96.4 ± 0.2%. We repeated this
measurement of this specific state while varying the pump power to verify the influence of
the multi-photon emission events, and found a clear dependence of all measures of the gate
performance (Fidelity with the |φ+〉 state, Tangle, Purity and Linear entropy) on the pump
power, and thus the higher order photon emission. These results are shown in figure 6.3 and
summarised in Table 6.3.1. It is noteworthy that some measures are far more sensitive than
others, and could be used as (more suitable) indicators for the gate performance, however a
conclusive investigation of this behaviour is currently still in progress.

Ppump Fidelity % Tangle % Purity % Linear Entropy

500mW 89.9± 0.3 72.0± 1.2 82.0± 0.4 23.6± 0.6
300mW 94.2± 0.2 83.4± 0.9 89.8± 0.3 13.6± 0.4
150mW 95.7± 0.1 89.4± 0.5 92.7± 0.2 9.8± 0.2
75mW 96.4± 0.2 90.6± 0.8 93.9± 0.3 8.2± 0.4

Table 6.1: Measures of the state quality obtained with different pump powers while running
the reduced encoding of C = 4. Clearly all measures improve as we turn down the pump
power and thus reduce the ratio of multi-pair to single-pair emission in our PDC-source.
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Figure 6.3: Summary of measures of the entangled state from the reduced period 2 encoding of
Shor’s algorithm for varying pump power. Tangle is the most sensitive of all measures, dropping by
18% when the pump power is decreased from 500mW@410nm to 75mW. The fidelity of the state
with the ideal expected output state increases by 6.5% for the same range of pump powers. While
these results verify the significance of multi-photon emission as a dominant error source, it also
highlights the insensitivity of the fidelity measure to the performance of the gate. Tangle provides
a by far more sensitve measure for entangled states. Error bars are derived through Monte Carlo
simulations on the state reconstruction, and are smaller than the symbol size where not shown.

Figure 6.4: Density matrix for the algorithm output for reduced encoding for the C = 4 case
(qubit 1= argument register, qubit 2= function register). Fidelity with the ideal output state
(|φ+〉) is 96.4± 0.2% while the Tangle reaches a record high 90.6± 0.8% for entanglement created
in an optical gate.
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6.3.2 Conclusions from this experiment

• Full implementation of Shor’s algorithm without adaptations of the circuit based on
the to be factored number N and the chosen co-prime C are still infeasible.

• Use of these known quantities (C,N) for a specific problem leads to several compiling
steps which can reduce the circuit complexity.

• Here we demonstrate two different compiled circuits, one for C = 2 and one for C = 4,
both for N = 15.

• We find near perfect algorithmic performance, even though the required entangled
states are non-ideal (Fidelity with a GHZ-state is as low as 59% in C = 4, N = 15
case.

• We verify experimentally the significance of multi-photon emission as a significant
source of gate performance degradation.
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6.3.3 The paper — Experimental demonstration of Shor’s algo-
rithm with quantum entanglement

Experimental Demonstration of a Compiled Version of Shor’s Algorithm
with Quantum Entanglement

B. P. Lanyon,1 T. J. Weinhold,1 N. K. Langford,1 M. Barbieri,1 D. F. V. James,2 A. Gilchrist,1 and A. G. White1

1Department of Physics and Centre for Quantum Computer Technology, University of Queensland, Brisbane QLD 4072, Australia
2Department of Physics and Center for Quantum Information and Quantum Control, University of Toronto,

Toronto ON M5S1A7, Canada
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Shor’s powerful quantum algorithm for factoring represents a major challenge in quantum computation.
Here, we implement a compiled version in a photonic system. For the first time, we demonstrate the core
processes, coherent control, and resultant entangled states required in a full-scale implementation. These
are necessary steps on the path towards scalable quantum computing. Our results highlight that the
algorithm performance is not the same as that of the underlying quantum circuit and stress the importance
of developing techniques for characterizing quantum algorithms.

DOI: 10.1103/PhysRevLett.99.250505 PACS numbers: 03.67.Lx, 03.67.�a, 03.67.Mn, 42.50.Dv

As computing technology rapidly approaches the nano-
scale, fundamental quantum effects threaten to introduce
an inherent and unavoidable source of noise. An alternative
approach embraces quantum effects for computation.
Algorithms based on quantum mechanics allow tasks im-
possible with current computers, notably an exponential
speedup in solving problems such as factoring [1]. Many
current cryptographic protocols rely on the computational
difficulty of finding the prime factors of a large number: a
small increase in the size of the number leads to an ex-
ponential increase in computational resources. Shor’s
quantum algorithm for factoring composite numbers faces
no such limitation, and its realization represents a major
challenge in quantum computation.

To date, there have been demonstrations of entangling
quantum-logic gates in a range of physical architectures,
ranging from trapped ions [2,3], to superconducting cir-
cuits [4], to single photons [5–12]. Photon polarization
experiences essentially zero decoherence in free space;
uniquely, photonic gates have been fully characterized
[6], produced the highest entanglement [8], and are the
fastest of any architecture [11]. The combination of long
decoherence time and fast gate speeds make photonic
architectures a promising approach for quantum computa-
tion, where large numbers of gates will need to be executed
within the coherence time of the qubits.

Shor’s algorithm can factor a k-bit number using 72k3

elementary quantum gates; e.g., factoring the smallest
meaningful number, 15, requires 4608 gates operating on
21 qubits [13]. Recognizing this is well beyond the reach of
current technology, Ref. [13] introduced a compiling tech-
nique which exploits properties of the number to be fac-
tored, allowing exploration of Shor’s algorithm with a
vastly reduced number of resources. Although the imple-
mentation of these compiled algorithms does not directly
imply scalability, it does allow the characterization of core
processes required in a full-scale implementation of Shor’s
algorithm. Demonstration of these processes is a necessary

step on the path towards scalable quantum computing.
These processes include the ability to generate entangle-
ment between qubits by coherent application of a series of
quantum gates. In the only demonstration to date, a com-
piled set of gate operations were implemented in a liquid
NMR architecture [14]. However, since the qubits are at all
times in a highly mixed state [15], and the dynamics can be
fully modeled classically [16], neither the entanglement
nor the coherent control at the core of Shor’s algorithm can
be implemented or verified.

Here, we implement a compiled version of Shor’s algo-
rithm, using photonic quantum-logic gates to realize the
necessary processes, and verify the resulting entanglement
via quantum state and process tomography [17,18]. We use
a linear-optical architecture where the required nonlinear-
ity is induced by measurement; current experiments are not
scalable, but there are clear paths to a fully scalable quan-
tum architecture [19,20]. Our gates do not require preex-
isting entanglement, and we encode our qubits into the
polarization of up to four photons. Our results highlight
that the performance of a quantum algorithm is not the
same as performance of the underlying quantum circuit
and stress the importance of developing techniques for
characterizing quantum algorithms.

Only one step of Shor’s algorithm to find the factors of a
number N requires a quantum routine. Given a randomly
chosen co-prime C (where 1<C<N and the greatest
common divisor of C and N is 1), the quantum routine
finds the order of C modulo N, defined to be the minimum
integer r that satisfies Cr mod N � 1. It is straightforward
to find the factors from the order. Consider N � 15: if we
choose C � 2, the quantum routine finds r � 4, and the
prime factors are given by the nontrivial greatest common
divisor of Cr=2 � 1 and N, i.e., 3 and 5; similarly, if we
choose the next possible co-prime, C � 4, we find the
order r � 2, yielding the same factors.

Figure 1(a) shows a conceptual circuit of the quan-
tum order-finding routine. It consists of three distinct
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steps: (i) register initialization, j0i�nj0i�m ! �j0i �
j1i��nj0i�m�1j1i �

P2n�1
x�0 jxij0i

�m�1j1i, where the
argument-register is prepared in an equal coherent super-
position of all possible arguments (normalization omitted
by convention); (ii) modular exponentiation, which by
controlled application of the order-finding function pro-
duces the entangled state

P2n�1
x�0 jxijC

xmodNi; (iii) the
inverse Quantum Fourier Transform (QFT) followed by
measurement of the argument-register in the logical basis,
which with high probability extracts the order r after
further classical processing. If the routine is standalone,
the inverse QFT can be performed using an approach based
on local measurement and feedforward [21]. Note that the
inverse QFT in [14] was unnecessary: it is straightforward
to show this is true for any order-2l circuit [22].

Modular exponentiation is the most computationally
intensive part of the algorithm [13]. It can be realized by
a cascade of controlled unitary operations, U, as shown in
the nested inset of Fig. 1(a). It is clear that the registers

become highly entangled with each other: since U is a
function of C and N, the entangling operation is unique to
each problem. Here, we choose to factor 15 with the first
two co-primes,C � 2 andC � 4. In these cases, entire sets
of gates are redundant: specifically, U2n � I when n > 0
for C � 4, and U2n � I when n > 1 for C � 2. Fig-
ures 1(b) and 1(c) show the remaining gates for C � 4
and C � 2, respectively, after decomposition of the uni-
taries into controlled-swap gates—this level of compiling
is equivalent to that introduced in Ref. [14]. Further com-
pilation can always be made since the initial state of the
function-register is fixed, allowing the CSWAP gates to be
replaced by controlled-not (CNOT) gates as shown in
Figs. 1(d) and 1(e) [23].

We implement the order-2-finding circuit, Fig. 1(d). The
qubits are realized with simultaneous forward and back-
ward production of photon pairs from parametric down-
conversion, Fig. 2(a): the logical states are encoded into the
vertical and horizontal polarizations. This circuit requires
implementing a recently proposed three-qubit quantum-
logic gate, Fig. 2(b), which realizes a cascade of n
controlled-z gates with exponentially greater success than
chaining n individual gates [24]. The controlled-not gates
are realized by combining Hadamards and controlled-z
(cz) gates based on partially polarizing beam splitters.
The gates are nondeterministic; when fully pre-biased,
success probability is 1=4 [8–10]. A run of each routine
is flagged by a fourfold event, where a single photon
arrives at each output. Dependent photons from the for-
ward pass interfere nonclassically at the first partial polar-
izer, Fig. 2(d); one photon then interferes with an in-
dependent photon from the backward pass at the second
partial polarizer. We measure relative nonclassical visibili-
ties, Vr � Vmeas=Videal, of 98� 2% and 85� 6%.

Directly encoding the order-4 finding circuit, Fig. 1(e),
requires six photons and at least one three-qubit and five

xx

1

H

Uc
20

Uc
21

Uc
2n-1

QFT-1

...

b)

H
H

a
b
c

d
e
f
g

H

H
H

a
b
c

d
e

argument

function

0

x

a
b
c

d
e
f
g X

H

T

H
H

H

H
H

H

c)

d) e)

f) g)

U
20

4

U
20

4

U
20

4

U
20

2 U
21

2

U
20

2

U
20

2

U
21

2

U
21

2

X

X

a)

C

Initialisation Modular exponentiation Inverse Quantum
Fourier Transform

x

x

x

H

H
H

T

H

H
H

T
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two-qubit gates. This is currently infeasible: the best six-
photon rate to date [12] is 30 mHz, which would be
reduced by 6 orders of magnitude using nondeterministic
gates. To explore an order-4 routine, and the different
processes therein, further compilation is necessary. In par-
ticular, we can compile circuits 1(d) and 1(e) by evaluating
logC	C

xmodN
 in the function-register in place of
CxmodN. This requires log2flogC	N
g function qubits, as
opposed to log2	N
; i.e., for N � 15, C � 2, the function-
register reduces from 4 to 2 qubits. Note that this full
compilation maintains all the features of the algorithm as
originally proposed in Ref. [13]. Thus, the order-4 circuit,
Fig. 1(e), reduces to a pair of CNOTS, allowing us to imple-
ment the circuit in Fig. 1(g). We use a pair of compact
optical gates [8–10], Fig. 2(c) and 2(e), each operating on a
dependent pair of photons, resulting in measured visibil-
ities for both of Vr � 98� 2%.

Figure 3 shows the measured density matrices of the
argument-register output for both algorithms, sans the re-
dundant top-rail qubit [25]. Ideally, these are maximally-
mixed states [22]: in all cases, we measure near-unity
fidelities [26,27]. The output of the routines are the logical
state probabilities, i.e., the diagonal elements of the matri-
ces. Combining these with the known state of the redun-
dant qubit, and reversing the argument qubits as required,
gives the binary outputs of the algorithm which after
classical processing yields the prime factors of N. In the
order-2 circuits the binary outputs of the algorithm are 00
or 10: the former represents the expected failure mode of
this circuit, the latter a successful determination of r � 2;
failure and success should have equal probabilities; we
measure them to be 50% to within error. Thus, half the
time the algorithm yields r � 2, which gives the factors, 3
and 5. In the order-4 circuit, the binary outputs are 000,
010, 100, and 110: the second and fourth terms yield the
order-4 result, the first is a failure mode, and the third
yields trivial factors. We measure output probabilities of
25% to within error, as expected. After classical processing
half the time, the algorithm finds r � 4, again yielding the
factors 3 and 5.

These results show that we have near-ideal algorithm
performance, far better than we have any right to expect
given the known errors inherent in the logic gates [8,28].
This highlights that the algorithm performance is not al-
ways an accurate indicator of circuit performance since the
algorithm produces mixed states. In the absence of the
gates, the argument-register qubits would remain pure; as
they are mixed, they have become entangled to something
outside the argument register. From algorithm perform-
ance, we cannot distinguish between desired mixture aris-
ing from entanglement with the function-register, and
undesired mixture due to environmental decoherence.
Circuit performance is crucial if it is to be incorporated
as a subroutine in a larger algorithm, Fig. 1(a), 1(e), and
1(g). The joint state of both registers after modular expo-
nentiation indicates circuit performance; we find entangled
states that partially overlap with the expected states, Fig. 4,
indicating some environmental decoherence.

Process tomography fully characterizes circuit perform-
ance, yielding the �-matrix, a table of process measure-
ment outcomes and the coherences between them.
Measured and ideal �-matrices can be quantitatively com-
pared using the fidelity [6,27]; we measured process fidel-
ities of Fp � 85%, 89% for the two-qubit gates of the
order-4 circuit. It is the easier of the two algorithms to
characterize since it consists of two gates acting on inde-
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FIG. 3 (color online). Algorithm outputs given by measured
argument-register density matrices. The diagonal elements are
the logical output probabilities. (a) Order-2 algorithm. The
fidelity with the ideal state is F � 99:9� 0:3%, the linear
entropy is SL � 100� 1% [27]. Combined with the redundant
qubit, the logical probabilities are fP00; P10g � f52; 48g � 3%.
(b) Order-4 algorithm, F�98:5�0:6% and SL � 98:1� 0:8%.
The logical probabilities are fP000;P010;P100;P110g� f27;23;24;
27g�2%. Real parts shown, imaginary parts are less than 0.6%.
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FIG. 4 (color online). Measured density matrices of the state of
both registers after modular exponentiation. (a) Order-2 circuit.
The ideal state is locally equivalent to a GHZ state: we find
FGHZ � 59� 4%. The state is partially mixed, SL �
62%� 4%, and entangled, violating the optimal GHZ entangle-
ment witness WGHZ � 1=2� FGHZ � �9� 4% [31]. (b) Order-
4 circuit. Measured fidelity with the ideal state, a tensor product
of two Bell-states, is F � 68� 3%. The state is partially mixed,
SL � 52� 4%, and entangled, with tangles of the component
Bell-States of 41� 5% and 33� 5%. Real parts shown, imagi-
nary parts are, respectively, less than 7% and 4%. The fidelity of
the four-qubit state (b) is higher than the three-qubit state (a),
chiefly because the latter requires nonclassical interference of
photons from independent sources, which suffer higher distin-
guishability, lowering gate performance [28,32,33].
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136 Tackling Shor’s algorithm

pendent qubit pairs. Consequently, by assuming that only
these gates induce error, the order-4 circuit process fidelity
is simply the product of the individual gate fidelities [30],
Fbcdep � Fbdp Fcep � 80%. Clearly, this is significantly less
than the algorithm success rate of 99.7%. The order-2 cir-
cuit is harder to characterize, requiring at least 4096 mea-
surements, infeasible with our count rates. Decomposing
the three-qubit gate into a pair of two-qubit gates yields
process fidelities Fp � 78%, 90% (reflecting differing in-
terferences of independent and dependent photons). There
is no simple relation between individual cz gate perfor-
mances and that of the three-qubit gate. However, a bound
can be obtained by chaining the gate errors, Fp � 20%
[29]. This is not useful, c.f. the fidelity between an ideal cz
and doing nothing at all of Fp � 25% (The bound only be-
comes practical as Fp ! 1). For larger circuits, full tomo-
graphic characterization becomes exponentially impracti-
cal. The order-finding routine registers contain k � n�m
qubits: state and process tomography of a k-qubit system
require at least 22k and 24k measurements, respectively.

An alternative is to gauge circuit performance via logical
correlations between the registers. Modular exponentiation
produces the entangled state

P2n�1
x�0 jxijyi where y is re-

spectively CxmodN and logC	C
xmodN
 for partial and full

compilation. For a correctly functioning circuit, measuring
the argument in the state x projects the function into y—
requiring at most 2k measurements to check. Figure 5
shows there is a clear correlation between the argument
and function registers, 59 to 83% and 67 to 87% for the
order-2 and order-4 circuits, respectively. Again, these
indicative values of circuit operation are significantly less
than the algorithm success rates.

We have experimentally implemented every stage of a
small-scale quantum algorithm. Our experiments demon-
strate the feasibility of executing complex, multiple-gate
quantum circuits involving coherent multiqubit superposi-
tions of data registers. We present two different implemen-
tations of the order-finding routine at the heart of Shor’s
algorithm, characterizing the algorithmic and circuit per-
formances. Order-finding routines are a specific case of
phase-estimation routines, which in turn underpin a wide
variety of quantum algorithms, such as those in quantum
chemistry [30]. Besides providing a proof of the use of

quantum entanglement for arithmetic calculations, this
work points to a number of interesting avenues for future
research—in particular, the advantages of tailoring algo-
rithm design to specific physical architectures, and the
urgent need for efficient diagnostic methods of large quan-
tum information circuits.

We wish to thank M. P. de Almeida and E. DeBenedictis
for stimulating discussions. This work was supported by
the Australian Research Council, Federation Fellow and
DEST Endeavour Europe programs, the IARPA-funded
U.S. Army Research Office Contract No. W911NF-05-
0397, and the Canadian NSERC.

Note added in proof.—By better spectral filtering, we
improved the GHZ state to F�67�3%, SL � 58� 3%,
and WGHZ � �17� 3%.
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FIG. 5 (color online). Measured function-register probabilities
after modular exponentiation, conditioned on logical measure-
ment of the argument-register Mx. There is a high correlation
between the registers: (a) Order-2 circuit, fP01; P10g � f83�
4%; 59� 5%g; (b) Order-4 circuit, fP00; P01; P10; P11g � f87�
3%; 84� 4%; 82� 5%; 67� 6%g.
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6.3 Experimental demonstration of Shor’s algorithm with quantum
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Experimental demonstration of Shor’s algorithm with quantum entanglement:
Additional on-line material

B. P. Lanyon, T. J. Weinhold, N. K. Langford, M. Barbieri, D. F. V. James∗, A. Gilchrist, and A. G. White
Centre for Quantum Computer Technology Department of Physics University of Queensland, Brisbane QLD 4072, Australia

∗Department of Physics Center for Quantum Information and Control University of Toronto, Toronto ON M5S1A7, Canada

For all the circuits Fig. 1b)-g), the consecutive
Hadamards in the top qubit of the argument-register can-
cel each other out (since h2=i): consequently both this
qubit, and the gate(s) controlled by it, are redundant and
need not be implemented experimentally. The remain-
ing argument-register qubits are maximally-entangled to
the function-register. Since the function-register output
is not measured, these argument qubits are maximally-
mixed, and the subsequent gates in the inverse QFT
are therefore also redundant. Thus the inverse QFT in
Ref. [14] was unnecessary: indeed, it is straightforward to
show this is true for any order-2l circuit. After modular

exponentiation, the circuit state is
∑2n−1

x=0 |x〉|CxmodN〉:
for any two values x and y that differ by an integer, k
number of orders, i.e. y−x=k 2l, CymodN=CxmodN ,
and the state after modular exponentiation becomes

∑2n−l−1
k=0

∑2l−1
a=0 |k2l+a〉|CamodN〉. Note that the first

n−l qubits of the argument-register (top to bottom) en-
code the number k, the remaining l qubits encode 2l dis-
tinct values of a: we divide the argument-register ac-
cordingly,

∑
k,a |k〉|a〉|Ca〉. The |k〉 qubits do not be-

come entangled to the function-register whereas the |a〉
qubits are maximally-entangled to it—consequently after
tracing out the function-register, the |a〉 qubits are in a
maximally-mixed state and any further gates acting on
them are redundant. Application of Hadamard gates in
the inverse QFT reset the |k〉 qubits to 0, inhibiting any
gates controlled by them, The final step of the inverse
QFT is to swap the first and last qubits of the argument
register which can be done after measurement. Thus the
inverse QFT can be omitted in all cases r=2l.
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Expanding the space

In this chapter I report on our work were the emission of multiple photons into one spatio-
temporal mode by the parametric down-conversion is no longer treated as a bug, but used
as a resource. Due to the bosonic nature of photons, we can not attach any identifying
labelling information onto the two overlapping photons, which causes problematic behaviour
when viewing them as individual quantum bits. However, we can use this very behaviour
and describe their combined polarisation state to represent a three-level quantum system—a
qutrit. In the first part of this chapter I will discuss a Fock-state filter which is a device
that preferentially transmits states with photon numbers larger than one, while blocking
individual photon states. The original experimental work that led to this publication was
conducted Kevin Resch, Jeremy O’Brien and myself, while the idea for this device stemmed
from Karou Sanaka and Kevin Resch and their original publication of such a Fock-state
filter [89]. Later Nathan Langford and Benjamin Lanyon discovered significant rotations
caused by the beamsplitters and adapted the measurements to account for these. Further,
the temperature stability of lab was significantly improved, remedying the periodic loss of
non-classical interference visibility caused by the on/off cycle of the air-conditioning sys-
tem. This lead to significantly improved results, which were amended to the paper and as
supplementary online material and together were published in Physical Review Letters [68].

We further realised that the filter could be used to expand the range of accessible qutrit
states. Specifically, we show that the combination of quarter and half waveplates, in addi-
tion to the Fock-state filter, suffice to rotate a qutrit state to any other pure qutrit state.
Furthermore the operation of the Filter creates entanglement between a qubit and a qutrit,
which we prove by measuring the Peres negativity [90, 91]. Again due to the observed ro-
tations the work was repeated with the original implementation being conducted by Kevin
Resch, Jeremy O’Brien and myself and the final implementation being conducted by Ben-
jamin Lanyon, Nathan Langford and myself. Alexei Gilchrist assisted in the derivation of
required measurement settings and the data analyses was conducted by Kevin Resch, Nathan
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Langford, Alexei Gilchrist in myself. This work was published in Physical Review Letters.
[92]

7.1 The Fock-State Filter

In section 1.5, the non-classical Hong-Ou-Mandel interference [13] was introduced. This
is only a specific case of the non-classical interference of indistinguishable photons at a
beamsplitter in general. As used to create the non-deterministic photonic quantum gates,
the reflectivity of the beamsplitter could be altered, or as in this chapter, the number of input
photons per mode. Again I have chosen to insert the paper [68] to provide the experimental
details and only briefly expand the discussion of the Filter behaviour which could not be
fitted into the paper due to length constraints. It is briefly discussed in the paper that the
probability of detecting a single photon in a specific mode, when n photons are injected into
one port of the beamsplitter, and a single photon in the other is given by

P (n) = |R(n−1)/2
(
R− n(1−R)

)
|2, (7.1)

where R is the reflectivity of the beamsplitter, and without loss of generality it is assumed,
that the single photon is to be observed in the reflected mode with respect to the single
photon input. It becomes obvious that for the choice R = n

n+1
the probability of observing

the single photon in the desired mode is zero. Hong-Ou-Mandel interference is thus only
the lowest case of this more general equation, with the choices n=1 and R=1/2. Instead,
imagine the case where we have a weak coherent state |α〉 as input. We can then write this
state as the coherent sum of

|α〉 =
∞∑

i

ai|i〉, (7.2)

where the ai are the probability of the finding the given photon number in the state. Inter-
acting this state with our single photon input on our Fock-state filter is going to significantly
alter the photon number probability distribution of our weak coherent state dependent on
the reflectivity of the beamsplitter. Specifically we can see that the Fock-state with photon
number n from our reflectivity definition will never be observed.

In our paper, we expand the use of this filter with respect to the original publication of
Sanaka et al. [89], by no longer simply acting on photon number Fock states, but by using
polarisation superposition states. During this experiment we always inject two horizontally
polarised photons in mode a in Figure 1 of the paper, but can alter the state with the
subsequent half-waveplate. We also inject two photons from the other fibre launcher, but
split one photon off at the first beamsplitter, which is detected as our trigger. The remaining
single photon is then horizontally polarised and can interfere with the horizontal components
of the two qubit state in mode a on the beamsplitter. To create the photons we use the
source discussed in section 2.2.3. Contrary to our previous experiments we now seek the
events in which multiple photons are emitted in the same spatio-temporal mode and only
operate the source in the forward direction. For our experiment, we chose R = 1/2. When
we do not rotate the polarisation of the bi-photon state in mode a, this leaves us with two
indistinguishable photons in this mode. The interaction with the single photon input from
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mode b reduces the probability of observing one photon in mode d and two photons in mode
c from 3/8 in the case of distinguishable photons to 1/8 for indistinguishable ones. We thus
expect a Hong-Ou-Mandel interference visibility of 2/3, which is shown in Figure 2 of the
paper. As the half-waveplate can not act independently on the two photons in mode a, the
transformation the photons undergo is given by:

|2H, 0V〉a → cos2 θ|2H, 0V〉a + sin2 θ|0H, 2V〉a
+
√

2 cos θ sin θ|1H, 1V〉a, (7.3)

where θ is the relative angle between the optic axis of the waveplate and the plane defined by
the horizontally polarised light field. If this state interacts with our single photon in mode
b, the |2H, 0V〉 suffer the decrease in count rate due to the non-classical interference as noted
above. The |0H, 2V〉 is not affected by the non-classical interference, but conditioning our
detection upon the detection of the horizontal photon injected in mode b in the output mode
d, coincident with detections of photons on detectors 3 and 4 requires that all 3 photons were
reflected, giving us the factor for the amplitude of

√
R3 which is equal to the attenuation

of the horizontal mode. Thus while the two components with equally polarised photons are
attenuated equally, the probability of detecting the |1H, 1V〉 in mode c vanishes in the ideal
case, as the horizontal photon will always pair with the horizontally polarised photon in
mode b. Thus it is impossible to observe a single horizontally polarised photon in output
mode d. Whenever the detector in mode d detects horizontally polarised photons (as it is
non number resolving, we can not differentiate between one or more photons), this requires
that there are two photons. This means in turn, that output mode c is only populated by
a single photon, and thus detectors 3 and 4 can not both fire. In other words there is no
fourfold signal and subsequently this case does not lead to a valid event. Hence the output
state for mode c after the central beamsplitter is

− cos2 θ|2H , 0V 〉c + sin2 θ|0H , 2V 〉c
(cos4 θ + sin4 θ)1/2

. (7.4)

For θ = π/4, this is the lowest order NOON state and thus a path entangled state. To
analyse this state, we probabilistically split the path entangled photons at a 50 : 50 beam-
splitter and subject both paths to a full tomographic polarisation analyses. Measurements
of the output state both when the filter is active and when it has been turned off by blocking
mode b are shown in Figure 3 of the paper and Figure 1 of the additional online material.
Both states have a high fidelity with the ideal state, while the output state when the filter
is active also shows high tangle. A more detailed discussion with more complete referencing
is given in the paper itself.
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7.2 The paper — Entanglement generation by Fock-

state filtration

Entanglement Generation by Fock-State Filtration
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We demonstrate a Fock-state filter which is capable of preferentially blocking single photons over
photon pairs. The large conditional nonlinearities are based on higher-order quantum interference, using
linear optics, an ancilla photon, and measurement. We demonstrate that the filter acts coherently by using
it to convert unentangled photon pairs to a path-entangled state. We quantify the degree of entanglement
by transforming the path information to polarization information; applying quantum state tomography we
measure a tangle of T � �20� 9�%.
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In practice it is extremely difficult to make one photon
coherently influence the state of another. The optical non-
linearities required are orders of magnitude beyond those
commonly achieved with current technology. Strong effec-
tive nonlinearities can be induced in linear optical systems
by combining quantum interference and projective mea-
surement [1], opening the possibility of scalable linear-
optical quantum computation. Such measurement-induced
nonlinearities have had high impact in quantum informa-
tion, notably in optical quantum logic gate experiments
[2,3] and in exotic state production [4,5].

Most schemes achieve an effective nonlinearity via
lowest-order nonclassical interference, with one photon
per mode input to a beam splitter. Higher-order nonclass-
ical interference, where more than one photon is allowed
per mode, enables additional control [1]. An ancilla photon
has been used to conditionally control the phase of a two-
photon path-entangled state [2], and to conditionally ab-
sorb either one- or two-photon states [6]. Applied to super-
positions, higher-order interference is predicted to act as a
Fock-state filter [7,8], conditionally absorbing only terms
with a specified number of photons. In this Letter, we prove
that conditional absorption is coherent by applying it to a
superposition, and experimentally generating a path-
entangled state. We quantify the entanglement by trans-
forming path information to polarization, and applying
quantum state tomography [9].

The Fock-state filter uses nonclassical interference at a
single, polarization-independent, beam splitter of reflectiv-
ity R. Consider the beam splitter in Fig. 1 with n� 1
photons incident: n in mode a, and 1 (the ancilla) in
mode b. There are n� 1 possible ways for there to be
one and only one photon in mode d: all the input photons
can be reflected, with probability amplitude

����

R
p

n�1, or
there are n ways for a photon from each input to be trans-
mitted and the rest reflected, n�1� R�

����

R
p

n�1. Assuming
indistinguishable photons, the probability amplitude for

detecting one and only one photon in mode d is A�n� �
R�n�1�=2�R� n�1� R�� [6,7,10]. Note that the probability
P�n� � jA�n�j2 can be zero for any single choice of n,
when R � n=�n� 1�; for all other n, P> 0 [6]. Hong-
Ou-Mandel interference is the lowest-order case, where
P � 0 when n � 1 and R � 1

2 [11]: the detector in mode
d is never hit by a single photon. If a superposition of
number states is input into mode a and a single photon is
detected in mode d, then the output state in mode c cannot
contain j1i.

The Fock-state filter could be tested by creating a
number-state superposition, applying the filter, and tomo-
graphically measuring the resulting state. In practice, each
step of this naı̈ve approach is impractical: creating non-
classical number-state superpositions is onerous [4,12] and
they are easily destroyed by loss; the Fock-state filter
requires an ancilla photon on demand and a perfect-
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efficiency number-resolving detector; and tomography
needs high-efficiency homodyne measurement.

Our experiment alleviates each difficulty. We use
double-pair emission from parametric down conversion
to generate a pair of polarized two-photon states in separate
spatial modes. Down conversion is often problematic since
it emits photon pairs probabilistically, and can emit more
than one pair at a time. However, in some cases double-pair
emission is beneficial [13], or essential [14]. Double-pair
emission provides input two-photon states in mode a and
single, ancillary, photons in mode b: we create the super-
position in mode a by rotating its polarization,

 j2H; 0Via ! cos2�j2H; 0Via � sin2�j0H; 2Via

�
���

2
p

cos� sin�j1H; 1Via; (1)

where � is the polarization angle relative to horizontal. We
create a horizontally polarized ancilla photon in mode b by
passing the two-photon state through a 50% beam splitter
and triggering on detection events from the output mode of
the beam splitter, see Fig. 1. The trigger photon is mea-
sured in coincidence with the three photons output from the
beam splitter: if a photon is lost then it cannot contribute to
the fourfold coincidence signal.

The Fock-state filter acts nonlinearly only on light with
the same polarization as the ancilla, horizontal in this
case. The amplitude given in Eq. (1) determines the trans-
formation on horizontally polarized components of the
state, jnHij1Hi ! A�nH�jnHij1Hi � . . . ; in contrast, the
vertically polarized components are transformed as,
jnVij1Hi ! R�nV�1�=2jnVij1Hi � . . . . Measurement of a
single horizontally polarized photon in mode d selects
only the first terms of these transformations (the latter
amplitude represents the only way that a horizontally
polarized photon can be detected in mode d). Noting
that the conditional transformation is not unitary, and
applying this to the terms in Eq. (1) we find, j2H; 0Via !
�j2H; 0Vic=2

���

2
p

, j1H; 1Via ! 0, and j0H; 2Via !
j0H; 2Vic=2

���

2
p

, and the state of mode c conditioned on a
horizontal photon detected in mode d is,

 

�cos2�j2H; 0Vic � sin2�j0H; 2Vic
�cos4�� sin4��1=2

: (2)

The final state can be tuned between separable and en-
tangled number-path states simply by adjusting the input
polarization �. In the case, � � �=4, this is the lowest-
order NOON state [15], �j2H; 0Vi-j0H; 2Vi�=

���

2
p

[16,17].
Note that the vertical polarization is a stable phase

reference for the nonlinear sign change of the horizontal
components, removing the need for a stable homodyne
measurement. The final state is transformed from one to
two spatial modes by a 50% beam splitter: mapping the
path-entanglement into polarization-entanglement lets us

characterize the state with quantum state tomography of
the polarization, with all of its attendant advantages [9].

Our down-conversion source was a BBO (�-barium
borate) nonlinear crystal cut for noncollinear type-I fre-
quency conversion (410 nm! 820 nm), pumped by a
frequency-doubled titanium sapphire laser. The down-
converted light was coupled into two single-mode optical
fibers, which when connected directly to FC-connectorized
single-photon counting modules yielded coincidence rates
of 30 kHz and singles rates of 220 kHz. Before coupling
back into free-space, the polarization of the light was
manipulated in-fiber using ‘‘bat-ears’’ to maximize trans-
mission through horizontal polarizers. Light in mode bwas
split by a 50% beam splitter, where one output mode was
coupled directly into a single-mode fiber coupled detector,
D1, which acted as a trigger. The remaining light passed
through a horizontal polarizer and is combined on a second
50% beam splitter with light from mode a, which is first
passed through a horizontal polarizer and half-wave plate
to rotate the polarization, as described in Eq. (1). Mode d is
directly detected at D2; mode c is split into two modes by a
50% beam splitter, each mode is polarization analyzed
using a quarter- and half-wave plate and polarizer. We
use D3 and D4 to perform a tomographically complete
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FIG. 2. Quantum interference in two- and fourfold coincidence
counts as a function of the longitudinal position of the input fiber
coupler for mode b. At zero delay, we see marked preferential
absorption of single-photon over two-photon states in mode c, as
indicated by the larger dip in two- over fourfold counts. The two-
and fourfold raw visibilities are �95:20� 0:02�% and �68� 5�%,
respectively; correcting for background as described in the text,
the twofold visibility becomes �99:6� 0:1�% (error bars are
smaller than the points in the twofold case and are not shown).
The visibilities are in excellent agreement with the theoretically
expected two- and four-visibilities of 100% and 66.7% [6,11,18].
The input coupler was scanned 1 mm in 630 s: to mitigate drift
effects the scan was repeated 63 times, leading to an integration
time of 31.5 min per point. The slopes in the data are due to
longitudinal-position-dependent coupling to the detectors; the
trigger detector was particularly sensitive in this respect, leading
to a large slope in the fourfolds; the twofolds show a much
smaller slope as the trigger detector plays no role in that data.
The visibilities were obtained from curve fits to products of a
Gaussian and a linear function.
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set of two-qubit measurements, fH;V;D;Rg	fH;V;D;Rg,
in coincidence with the trigger and ancilla detectors, D1
and D2. The resulting density matrices are reconstructed
using the maximum-likelihood technique [9]. All optical
paths between fiber couplers to detectors were made ap-
proximately equal (
50 cm) to facilitate high-efficiency
single-mode to single-mode fiber coupling. The tilted half-
wave plate in the D4 arm, set with its optic axis horizontal,
compensated beam splitter birefringence.

Nonclassical interference is the heart of the Fock-state
filter. We characterized this by setting the polarization of
mode a to horizontal, matching that of mode b, and setting
analyzers at D3, D4 to horizontal. Figure 2 shows experi-
mentally measured twofold coincidence counts, in this
case between detectors D2 and D4 (open circles), and the
fourfold coincidence counts, between D1, D2, D3, and D4
(solid circles), as a function of the longitudinal position of
the input fiber coupler for mode b.

As D2 and D4 detect the two outputs of the beam
splitter, the twofolds show the standard Hong-Ou-Mandel
interference dip [11], with a raw visibility of V1 �
�95:20� 0:02�%. To estimate the performance of the
Fock-state filter we must consider the events from
double-pair emission. We can estimate these by blocking
mode a and b in turn and measuring the twofold coinci-
dences between detectors D2 and D4, 5:8� 0:16 Hz and
30:9� 0:5 Hz, respectively. Summing these gives an esti-
mate of the number of twofold coincidences due to the
two-photon terms in modes a and b, �36:7� 0:5� Hz.
These coincidences act as a background; subtracting
them gives a corrected visibility of V01 � �99:6� 0:1�%.

The fourfold coincidence counts in Fig. 2 display a
higher-order nonclassical interference effect with visibility
V2 � �68� 5�%, which agrees with the expected value of
66.7% [6]. Note that the interference visibility is much
larger for the n � 1 input state, as measured by the twofold
coincidences, than the n � 2 input state, as measured by
the fourfold coincidences. At the center of the interference
dip, single photons are removed from an input state with
much higher probability than pairs of photons: this is the
action of the Fock-state filter.

The visibilities, V 01 and V2, set an upper bound to the
performance of the Fock-state filter. Ideally, the probability
of transmission when the ancilla and n-photon inputs are
distinguishable is Q�n� � Rn�1 � nRn�1�1� R�2 [6]. The
nonlinear absorption probability P�n� is modified by the
visibilities as P0�n� � �1� Vn�Q�n�. We estimate the fil-
ter’s efficiency of blocking single photons, P0�2�=P0�1� �
60� 20; at best, it passes two-photon terms at 60 times the
rate it passes single-photon terms.

To show the coherent action of the filter, we set the input
wave plate in mode a to rotate the linear polarization from
horizontal to diagonal, creating the superposition of
Eq. (1). We first measure the input state without the action
of the Fock-state filter by blocking the ancilla photon in

mode b, and performing tomography on mode c using
detectors D3 and D4. Counting for 30 s per measurement
setting, we measured raw twofold coincidence counts of
{86, 68, 156, 61, 89, 77, 195, 61, 200, 170, 328, 131, 98,
102, 175, 71}. The reconstructed density matrix, shown in
Fig. 3(c), gives us the initial state of the light and includes
the effect of any birefringence in our experiment. The
density matrix consists of near equal probabilities, and
strong positive coherences between them—characteristic
of the expected ideal state j i � jDDi. The fidelity be-
tween the ideal and measured state � is F � h j�j i �
�93� 4�%; the linear entropy is SL � �11� 8�% [9], in-
dicating the state is near-pure; and the tangle is zero within
error, T � �0:5� 0:8�%, indicating that as expected the
input state is unentangled.

The Fock-state filter is run by unblocking mode b and
setting its coupler to the zero-delay position shown in
Fig. 2. We performed tomography on the photon pairs at
D3 and D4, but now in coincidence with the trigger and
ancilla photon detectors, D1 and D2, counting for 8.25
hours per measurement setting, obtaining the raw counts
{62, 10, 45, 25, 10, 59, 49, 49, 53, 40, 36, 45, 37, 50, 46,
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FIG. 3 (color online). Density matrices for the Fock-state filter.
Ideal output states from the filter when the filtering is (a) turned
off, jDDi, and (b) turned on, �jHHi-jVVi�=

���

2
p

, as described in
text. The corresponding experimental tomographic reconstruc-
tions, based on raw counts, are shown, respectively, in (c) and
(d), the upper (lower) panels are the real (imaginary) compo-
nents. The fidelity between the ideal and measured states is 93�
4% and 69� 9%, respectively. The state measured in (d) is
entangled, with tangle T � 20� 9%.
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72}. The reconstructed density matrix is shown in
Fig. 3(d)]. Consistent with the prediction of Eq. (2) setting
� � �=4, there are two striking differences between this
and Fig. 3(c)]: (1) the dramatic reduction of the HV and
VH populations and coherences; and (2) the sign change of
the coherences between the HH and VV populations. The
fidelity, between the ideal state, j i � �jHHi � jVVi�=

���

2
p

,
and the measured state � is F � �69� 9�%. The linear
entropy is SL � �57� 6�%, the increase in entropy indi-
cates that the filter introduces mixture but retains much of
the input state’s coherence. This is reflected in the output
state entanglement, T � �20� 9�%, requiring coherence.

The tomography is based on the fourfold signal, which is
particularly susceptible to background, due to low rates
and long counting times. We use raw, rather than corrected
fourfold counts, as unambiguous measurement of the back-
ground is nontrivial due to the manifold combinations of
accidental detection events. Thus �PHH � PVV�=�PHV �
PVH� is a lower bound on the preferential absorption of
the filter, 6:0� 1:5.

We have constructed a coherent nonlinear absorber—a
Fock-state filter—combining measurement with higher-
order quantum interference. The filter preferentially ab-
sorbed up to 60 times more single photons than photon
pairs, and produced an entangled state from a separable
state: the output was measured to have a tangle of T �
�20� 9�%. By encoding quantum information in both
number and polarization, we were able to succinctly dem-
onstrate all the salient features of a Fock-state filter in a
single experiment. This is a powerful technique suitable for
applications requiring quantum nonlinear optics.

We thank Anton Zeilinger for valuable discussions. This
work was supported in part by the DTO-funded U.S. Army
Research Office Contract No. W911NF-05-0397, a UQ
ECR Grant, and the ARC Discovery program.

Note added in proof.—While correcting the proofs,
laboratory temperature stability and source brightness
were both improved. Consequently, the Fock-state filter
produced a more highly entangled state with tangle of T �
51� 11%, linear entropy of SL � 46� 9%, and fidelity
with the ideal of F � 77� 6%. See additional online
material [19] for details.

[1] E. Knill, R. Laflamme, and G. J. Milburn, Nature
(London) 409, 46 (2001).

[2] K. Sanaka, T. Jennewein, J.-W. Pan, K. Resch, and
A. Zeilinger, Phys. Rev. Lett. 92, 017902 (2004).

[3] T. B. Pittman et al., Phys. Rev. A 64, 062311 (2001);
J. L. O’Brien et al., Nature (London) 426, 264 (2003);
S. Gasparoni et al., Phys. Rev. Lett. 93, 020504 (2004).

[4] K. J. Resch et al., Phys. Rev. Lett. 88, 113601 (2002);
A. I. Lvovsky and J. Mlynek, Phys. Rev. Lett. 88, 250401
(2002).

[5] J. Wenger et al., Phys. Rev. Lett. 92, 153601 (2004);
A. Zavatta et al., Science 306, 660 (2004).

[6] K. Sanaka et al., Phys. Rev. Lett. 96, 083601 (2006).
[7] H. F. Hofmann and S. Takeuchi, quant-ph/0204045; H. F.

Hofmann and S. Takeuchi, Phys. Rev. Lett. 88, 147901
(2002).

[8] B. M. Escher et al., Phys. Rev. A 70, 025801 (2004); K. J.
Resch, Phys. Rev. A 70, 051803 (2004); K. Sanaka, Phys.
Rev. A 71, 021801 (2005).

[9] D. F. V. James et al., Phys. Rev. A 64, 052312 (2001).
[10] Singles rate is the rate of single ‘‘clicks’’ from standard

detectors and can arise from detection of one or more
photons.

[11] C. K. Hong et al., Phys. Rev. Lett. 59, 2044 (1987).
[12] S. M. Tan et al., Phys. Rev. Lett. 66, 252 (1991); L. Hardy,

Phys. Rev. Lett. 73, 2279 (1994); D. T. Pegg et al., Phys.
Rev. Lett. 81, 1604 (1998); J. Clausen et al., Appl. Phys. B
72, 43 (2001).

[13] C. Simon and J.-W. Pan, Phys. Rev. Lett. 89, 257901
(2002); J.-W. Pan et al., Nature (London) 423, 417 (2003);
P. Walther et al., Phys. Rev. Lett. 94, 040504 (2005).

[14] D. Bouwmeester et al., Phys. Rev. Lett. 82, 1345 (1999);
A.Lamas-Linares et al., Nature (London) 412, 887 (2001).

[15] H. Lee et al., Quantum Imaging and Metrology:
Proceedings of the Sixth International Conference on
Quantum Communication, Measurement and Computing,
edited by J. H. Shapiro and O. Hirota (Rinton Press,
Princeton, NJ, 2002), pp. 223–229.

[16] Alternatively, this can be seen as transforming a pair of
identically polarized photons in the same spatial mode,
j2D; 0Ai, to a pair of orthogonally polarized photons
j1D; 1Ai, a nonlinear operation impossible with linear
optical elements.

[17] jfD;A; Rgi � �j0if�;�;�igj1i�=
���

2
p

.
[18] We used the same experiment to simultaneously measure

both n � 1 and n � 2 absorption, unlike Ref. [6]. Our
design ensured higher visibilities, �95:20� 0:02�% and
�68� 5�%, c.f. 83� 1% and �61� 6�% [6], and signifi-
cantly higher rates.

[19] See EPAPS Document No. E-PRLTAO-98-021711 for
supplementary figures and text. For more information on
EPAPS, see http://www.aip.org/pubservs/epaps.html.

PRL 98, 203602 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
18 MAY 2007

203602-4



146 Expanding the space

Entanglement generation by Fock-state filtration: Additional on-line material

During the type-setting of the paper, the temperature
stability of the experiment was dramatically improved by
installing a new air-conditioning unit. We also increased
the the source brightness by moving from a BBO to BiBO
down-conversion crystal. This gave a four-fold coinci-
dence rate of approximately 170 counts per hour. Conse-
quently, the new measured entangled two-qubit state had
an improved tangle of T=51±11% and linear entropy of
SL=46±9%. The raw counts were {47, 11, 19, 36, 5, 41,
16, 20, 35, 20, 33, 15, 25, 21, 3, 8} for the measurements
{HH, HV, HD, HR, VH, VV, VD, VR, DH, DV, DD,
DR, RH, RV, RD, RR} respectively (integration time
∼40 minutes per setting). Instead of using tilted wave
plates (as shown in the experimental layout in Figure 1),
here we compensated numerically for the unwanted bire-
fringence introduced by the beam splitters by finding the

optimal single-qubit unitary rotation. The rotated state
is plotted in Fig. ??. This state has a fidelity with the
maximally entangled target state of F = 77±6%.
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density matrix reconstructed as described in text.
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7.3 Operations for Qutrits

When two polarisation encoded qubits populated the same spatio-temporal mode, the bi-
photonic state can either be thought of as the combination of the individual qubit polarisation
states as in the previous section, or we can think of this as a quantum three level system —
a qutrit. We choose to encode the bi-photonic qubit polarisations states in such a manner,
that

|H,H〉 → |0〉3,
|H,V 〉 → |1〉3,
|V,H〉 → |1〉3,
|V, V 〉 → |2〉3. (7.5)

As we cannot distinguish the two photons unless their polarisation differs, we can not dis-
tinguish between the |H,V 〉 and the |V,H〉 state, leading to them both encoding the logical
|1〉 state. The input into our Fock-state filter, discussed in the previous section, can thus
be viewed as a bi-photonic qutrit. Qutrits offer increased security in a range of quantum
information protocols, greater channel capacity in communication protocols and novel tests
of quantum mechanics1. While a method has been demonstrated to create any bi-photonic
polarisation encoded qutrit state, the range of operations on a qutrit state is severely limited
with linear optics, i.e. as we can see from equation 7.3 we can not use a half-waveplate to
arbitrarily coherently shift population between the three logic states of such a qutrit. In
the following paper, we present a method based on our previously discussed Fock-state filter
that largely extends the range of possible operations on bi-photonic qutrits. In fact it allows
transforming any pure qutrit state into any other pure qutrit state with the addition of a
QWP and a HWP to the initial state preparation. Furthermore, similar to the Fock-state
filter described above, this system is capable of creating entanglement. Specifically it entan-
gles the qutrit with the photon injected in mode b. The output state is comprised of a qubit
in mode d and a qutrit in mode c becomes entangled, which we demonstrate by perform-
ing state tomography on this system and measuring the Peres negativity [90]. We thereby
demonstrate the first experimental entanglement between systems of different dimensions,
a scenario, that has not been well investigated. We thus hope that this paper will trigger
research into the benefits and behaviour of such systems.

1See paper at the end of this chapter for references
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Quantum information carriers with higher dimension than the canonical qubit offer significant
advantages. However, manipulating such systems is extremely difficult. We show how measurement-
induced nonlinearities can dramatically extend the range of possible transforms on biphotonic qutrits—
three-level quantum systems formed by the polarization of two photons in the same spatiotemporal mode.
We fully characterize the biphoton-photon entanglement that underpins our technique, thereby realizing
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qutrit entanglement and to manipulate any bosonic encoding of quantum information.
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Higher dimensional systems offer advantages such as
increased security in a range of quantum information pro-
tocols [1–7], greater channel capacity for quantum com-
munication [8], novel fundamental tests of quantum
mechanics [9,10], and more efficient quantum gates [11].
Optically such systems have been realized using polariza-
tion [12] and transverse spatial modes [1,13]. However in
each case state transformation techniques have proved
difficult to realize. In fact, performing such transforma-
tions is a significant problem in a range of physical
architectures.

The polarization of two photons in the same spatiotem-
poral mode represents a three-level bosonic quantum sys-
tem, a biphotonic qutrit, with symmetric logical basis
states: j03i � j2H; 0Vi, j13i � �j1H; 1Vi � j1V; 1Hi�=

���
2
p

,
and j23i � j0H; 2Vi [14]. The simple optical tools which
allow full control over the polarization of a photonic qubit
are insufficient for full control over a biphotonic qutrit
[15]. Consequently even simple state transformations re-
quired in qutrit generation, processing, and measurement
are extremely limited. Significant progress has been made
in biphoton state generation. For example, complex arbi-
trary state preparation techniques that employ multiple
nonlinear crystals [12] and nonmaximally entangled states
[16] have been developed.

Here we present and demonstrate a technique that dra-
matically extends the range of biphotonic qutrit trans-
forms, for use in all stages of qutrit manipulation. The
technique is based on a Fock-state filter which employs a
measurement-induced nonlinearity to conditionally re-
move photon number (Fock) states from superpositions
[17–22]. We first demonstrate the action of the filter as a
qutrit polarizer, which can conditionally remove a single
logical qutrit state from a superposition. We then combine
this nonlinear operation with standard wave plate rotations
to demonstrate the dramatically increased range of qutrit
transforms it enables. Finally we present the first instance
and full characterization of a polarization entangled

photon-biphoton state, which underpins the power of our
technique. Such qubit-qutrit states have been studied ex-
tensively [23–29] and we suggest an extension to generate
this type of entanglement.

We generate our qutrits through double-pair emission
from spontaneous parametric down-conversion (Fig. 1).
Fourfold coincidences between detectors D1–D4 select,
with high probability, the cases of double-pair emission
into inputs 1 and 2. The biphoton state in mode 1 is passed
through a horizontal polarizer to prepare the logical qutrit
state j03i. Input 2 is passed through a 50% beam splitter;
detection at D1 indicates a single photon in mode b; after a
polarizing beam splitter this prepares the ancilla polariza-
tion qubit (j02i � j1Hi, j12i � j1Vi) in the logical state
j02i. Thus a qubit and qutrit arrive simultaneously at the
central 50% beam splitter.

A Fock filter relies on nonclassical interference effects
[30]. When two indistinguishable photons are injected into
modes a and b (Fig. 1), the probability of detecting a single
photon in mode d is zero; if two or more photons are
injected into mode a, then this probability is nonzero. By
injecting a single photon into mode b and detecting a single
photon in mode d, single photon terms can therefore be
removed from any photon number superposition states

P3 qutrit tomographyqutrit-qubit source
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qubitλ/2
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FIG. 1 (color online). Experimental schematic. Emission from
a parametric down-conversion (PDC) crystal is coupled into
single-mode fiber and injected into modes 1 and 2. Coincident
(C) detection of photons at D1–4 selects, with high probability,
the cases of double photon-pair emission from the PDC source.
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arriving in mode a. By varying the reflectivity of the beam
splitter it is possible to conditionally remove any number
state from a superposition [21]. This Fock-state filter acts
only on light with the same polarization as the ancilla (in
our case, horizontal), so by detecting a single horizontal
photon in mode d, the logical qutrit state j13i is blocked,
since it contains a single photon with the same polarization
as the ancilla. The remaining logical qutrit states are
coherently attenuated.

For a beam splitter of reflectivity 50% the filter acts as a
qutrit polarizer described by the operator P3 � j03ih03j �
j23ih23j. By varying the polarization of the ancilla, and the
reflectivity of the central beam splitter, the operation of our
lossy qutrit polarizer can be tuned to preferentially remove
the j03i, j13i, or j23i states. We choose to demonstrate
removal of the j13i state and include the general operation
of the filter for an arbitrary beam splitter reflectivity [31].

The qutrit polarizer offers a powerful tool for transform-
ing between qutrit states. For example, consider the initial
qutrit state j03i injected into input 1, the red dot of Fig. 2.
The black ring shows the limited range of qutrit states, with
real coefficients, that are accessible using wave plates [32].
By including the qutrit polarizer the range is dramatically
extended to the closed sphere in Fig. 2; the transformation
to any real state is possible.

We measure our qutrits by passing mode c through a
50% beam splitter and performing polarization analysis of
the two outputs in coincidence, as shown in Fig. 1. This
nondeterministically discriminates the logical states j03i,
j13i, and j23i with probabilities p�03� �

1
2 , p�13� �

1
4 , and

p�23� �
1
2 . Combining it with single qubit rotations after

the beam splitter allows us to perform full qutrit state
tomography of mode c. Complete qutrit tomography re-
quires nine independent measurements, which we con-
struct from logical basis states and two-part superposi-
tions [1]. Our method differs from that of Refs. [14,15].
We use convex optimization to reconstruct the qutrit den-

sity matrix and Monte Carlo simulations for error analysis
[33,34].

Ideally both the central and tomography beam splitters
reflect 50% of both polarizations. In practice, we found that
they deviate by a few percent and impart undesired unitary
rotations on the optical modes. For the tomography beam
splitter, these imperfections modified the nine measured
qutrit states; we characterized this effect and incorporated
it into the tomographic reconstruction. We found that the
effect of the imperfect central beam splitter on the per-
formance of the qutrit polarizer was negligible.

A frequency-doubled mode-locked Ti:Sapphire laser
(820 nm! 410 nm, �� � 80 fs at 82 MHz repetition
rate) is used to produce photon pairs via parametric
down-conversion from a Type I phase-matched 2 mm
Bismuth Borate (BiBO) crystal, filtered by blocked inter-
ference filters (820� 1:5 nm). We collect the down-
conversion into single-mode optical fibers. Photons are
detected using fiber-coupled single photon counting mod-
ules and coincidences measured using a Labview (National
Instruments) interfaced quad-logic card (ORTEC
CO4020). When directly coupled into detectors the source
yielded twofolds at 60 kHz and singles rates at 220 kHz. At
the output of the complete circuit we observed fourfold
coincidence rates at approximately 1 Hz.

The quality of the nonclassical interference underpin-
ning the qutrit polarizer can be measured directly [21].
Reference [22] relates nonclassical visibilities to a Fock-
state filter’s ability to block single photon terms. We set all
input states and measurement settings to horizontal.
Twofold coincidence counts between D2 and D4 show
interference between two single photons with visibility
V11 � 97� 1%. Fourfolds between detectors D1–D4 de-
tect the interference between a photon and a biphoton with
visibility V12 � 68� 4%. From these visibilities we pre-
dict an extinction ratio of 5��2�:1 [22]; i.e., our qutrit
polarizer will pass the logical j03i and j23i states at 5 times
the rate it passes the logical j13i state.

To demonstrate the qutrit polarizer we include a half
wave plate in mode a set to � � �

8 to generate the super-
position qutrit state [32]:

 H 3���j03i � cos22�j03i � sin22�j23i � sin4�j13i=
���
2
p
:

(1)

We measure the output state in mode cwithout applying
the qutrit polarizer. This is achieved by blocking the ancilla
photon in mode b and performing qutrit tomography of
mode c in twofold coincidence between D3 and D4. The
experimentally reconstructed density matrix is shown in
Fig. 3(a) and has a near perfect fidelity between the mea-
sured and ideal states, F � 97� 1%, and a low linear
entropy, SL � 6� 7% [35,36]. We then prepare the output
state by unblocking the ancilla and, as in all further cases,
perform tomography of mode c in fourfold coincidence
between D1–D4. The qutrit polarizer is now ‘‘on’’ and we
expect the absorption of the logical j13i state. The recon-

FIG. 2 (color online). Comparison of the range of linearly po-
larized qutrit states achievable by transforming the state j03i (red
dot); when using only wave plate operations (black ring); by in-
corporating our qutrit polarizer, Q3���H3���P3�

�������
0:5
p

�H3���j03i
(sphere) [31,32].
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structed density matrix is shown in Fig. 3(b) and has a
lower fidelity with the ideal, F � 78� 8%, and linear
entropy SL � 47� 14%. The relative reduction in the
logical j13i state probability, when the filter is turned on,
yields an extinction ratio of 6:80��0:07�:1, consistent with
that predicted above.

Measured nonclassical visibilities are significantly lim-
ited by higher-order parametric down-conversion photon
number terms [37,38]. After removing these effects, as
described in Ref. [22], we find a corrected twofold visibil-
ity of V011 � 100� 1%, which would be measured given
an ideal two-photon source (higher-order effects cannot be
distinguished from experimental uncertainty in the four-
fold visibility). This corrected visibility can be used to
predict the potential performance of our circuit given an
ideal source [22]; in this case we predict that the filter
would pass the logical j03i and j23i states at least 24 times
the rate it passes the logical j13i state. Clearly the perform-
ance of our qutrit polarizer is significantly limited by
higher-order emissions from our optical source.

Figures 3(c) and 3(d) show experimentally reconstructed
density matrices of newly accessible states achieved by
incorporating the qutrit polarizer with half wave plate
operations applied to the initial state of j03i; j13i and
�j03i � j13i � j23i�=

���
3
p

. The fidelities with the ideal are
77� 3% and 83� 7% with linear entropies 51� 7% and
38� 15%, respectively. These fidelities exceed the maxi-
mum achievable using only linear wave plates (50%) by
9� 1 and 5� 1 standard deviations, respectively.

The qutrit polarizer employs a measurement-induced
nonlinearity whereby the biphoton becomes entangled
with the ancilla photon. Instead of detecting the ancilla
in a single, fixed polarization state, we can also use tomo-
graphic measurements to directly investigate this resultant
entangled qubit-qutrit system. Without emphasis to the
physical systems involved, such states were first studied
by Peres as a special case of his negativity criterion for
entanglement; a negativity of 0 (> 0) is conclusive of a

separable (entangled) state [23,39,40]. More recently these
states have received a significant amount of attention [23–
28] and have been predicted to exhibit novel entanglement
sudden death phenomena [29].

On injection of the qutrit state given by Eq. (1) into the
Fock filter, we find the following qubit-qutrit joint state of
modes c and d:

 

cos22�j02;03i�sin4�j12;03i�sin22��
���
2
p
j12;13i�j02;23i�

N
;

(2)

where N �
����������������������
2� cos4�
p

. By varying � we can tune the
level of entanglement from zero (� � 0) to near-maximal
(� � �

4 ), with corresponding negativities of 0 to
��������
8=9

p
�

0:94, respectively. To perform qubit-qutrit state tomogra-
phy we use 36 independent measurements constructed
from all of the combinations of the aforementioned nine
qutrit states and four qubit states (H, V, D, R). Figure 4
shows the measured density matrix for the near-maximally
entangled case, which corresponds to the preparation of
two vertically polarized photons in mode a. There is a high
fidelity of 81� 3% with the ideal state and low linear
entropy of 17� 5%, and the state is highly entangled
with a negativity of 0:77� 0:05. We note that a maximally
entangled state is predicted for � � �

4 and a central beam
splitter reflectivity of R �

���
2
p
=�

���
2
p
� 1� � 58:6%.

Entangling information carriers to ancilla qubits is an
extremely powerful technique [41]: such correlations play
a central role in the power of the Fock filter to transform
biphotonic qutrits. However, the application of our tech-
nique is not limited to extending transforms on single
qutrits. We propose that the generation of qubit-qutrit
entanglement offers a path to realize multiqutrit opera-
tions. For example, a pair of entangled qubit-qutrit states
could be used to create qutrit-qutrit entanglement by pro-
jecting the qubits into an entangled state using well-known
techniques. The much anticipated development of high-
brightness single photon sources will make such experi-
ments feasible in the near future. We wish to emphasize
that our technique is not limited to manipulating biphotons.
The Fock filter can be applied to any system where mea-
surement can induce nonlinear effects, that is, any bosonic
encoding of quantum information, including bosonic
atoms [42] and time-bin, frequency, and orbital angular
momentum encoding of photons.

We have shown that measurement-induced nonlineari-
ties offer significant advantages for the manipulation of
higher dimensional bosonic information carriers, specifi-
cally biphotonic qutrits. We demonstrated a nonlinear qu-
trit polarizer, capable of conditionally removing a single
logical qutrit state from a superposition and greatly ex-
tending the range of possible qutrit transforms. Such tools
could find application to quickly generate the mutually
unbiased basis states required for optimum security in
qutrit quantum-key-distribution protocols [5–7] or as a
filtering technique to manipulate entanglement in qutrit-
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FIG. 3 (color online). Comparison of real parts of (i) ideal and
(ii) measured qutrit density matrices. (a) The measured output
state with the qutrit polarizer ‘‘off’’ [Eq. (1) for � � �

8 ]. (b) The
output state with the qutrit polarizer ‘‘on’’ showing the removal
of the logical j13i qutrit state. (c)–(d) Newly accessible qutrit
states j13i and �j03i � j13i � j23i�=

���
3
p

, respectively. States (b)–
(d) all lie on the surface of the sphere of Fig. 2, but not on the
ring.
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qutrit states. Finally we fully characterized the entangled
photon-biphoton state that underpins the power of our
technique. This is the first instance of the generation and
characterization of entanglement between these distinct
physical systems and makes recent theoretical proposals
experimentally testable [29]. Besides offering a path to
implement novel multiqutrit operations we propose that
our technique can be extended to manipulate any bosonic
encoding of quantum information.

This work was supported by the Australian Research
Council, ARC Discovery Federation, DEST Endeavour
Europe programs, and the IARPA-funded U.S. Army
Research Office Contract No. W911NF-05-0397.

Note added.—Recently several proposals were pre-
sented to which our technique is directly relevant [43– 45].
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FIG. 4 (color online). Comparison of entangled qubit-qutrit
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8
Conclusion and whereto from here

Linear optical quantum computing has under gone a remarkable turn around since the re-
alisation, in the KLM paper [12] that measurement induced non-linearities, ancilla photons
and fast feed-forward can suffice to produce scalable gates. A further boost was the adap-
tation of the one-way quantum computing idea [7] to optics [8, 9] leading to a wide spread
investigation into generation of optical cluster states.

In this thesis, I have described the development of a pulsed parametric down-conversion
source cable of generating up to 4 photons simultaneously. In chapter 3, I discuss the
application of this source to the development and characterisation of a novel two-photon
gate for optical quantum computing. By employing partially polarising beamsplitters, this
gate no longer requires classical interferometers to perform the CZ or CNOT logic operations.
Hence the alignment difficulty is largely reduced, while the stability is increased and equal
performance is achieved. In chapter 4, I continue the investigation in to the behaviour of
theses gates, by operating them with independently generated PDC photons. I complete
the first full characterisation of an entangling gate between independently generated qubits.
The worse than expected gate performance leads me to develop a comprehensive model of
this gate. This model, which is in very good agreement with the experimentally measured
gate performance, and allows us to derive the first comprehensive and complete error model
for any quantum computing architecture. The model allows us to pinpoint the main sources
of gate performance degradation. Surprisingly this is not mode matching as expected, but
the probabilistic emission of multiple photon pairs in the same spatio-temporal mode.

While experiments have routinely performed gate characterisations and measuring the
overlap of the performed gate operation with the intended, no path was known to correlate
the experimental gate performance to the error per gate thresholds derived theoretically for
fault tolerant quantum computing. We bridge this gap, by developing the first methods that
allow benchmarking of experimental gate performance measures with respect to the theo-
retically derived fault-tolerance thresholds. Using these techniques, we can now find bounds
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for the error probability per gate of experimentally characterised gates. Together with the
model of the gate, this benchmarking allows the estimation of advances and improvements
required to reach the fault-tolerant regime with linear optical quantum computing.

Having identified the main error source in our gate as multi-photon emission, we proceed
to implement a quantum logic gate with three qubits and a pair of two qubit gates. Both
allow the implement a compiled version of Shor’s algorithm [2] to factor the number 15 into
its prime factors. We find near perfect algorithmic fidelity despite the non-ideal gate oper-
ation, raising the open question of how exactly the individual errors affect the algorithmic
performance.

In the final experiments described in this thesis, we work on the expanded Hilbert space
of qutrits. We demonstrate a non-linear filter that attenuates states with lower photon
number stronger than those with higher photon number. Additionally we employ this filter
to entangle a qubit and a qutrit for the first time and show that the filter combined with
ordinary waveplates suffices to generate and rotate between all pure qutrit states.

The work demonstrated in this thesis should give rise to a pinpointed approach to min-
imise the noise sources in linear optical quantum computing. Utilising the demonstrated
modelling technique novel sources, gates and detectors could easily be tested for their suit-
ability and the offered improvements for linear optical quantum computing. The bench-
marking technique should be able to clearly identify if and when the technological advances
theoretically allow fault-tolerant quantum computing. Experimentally this crossover-point
will be shifted to lower tolerable error probabilities per gate due to the extensive encoding
overhead near the thresholds. That said, the issue of post-selective detection and non-
determinism will also need to be addressed. Nevertheless I believe that the tools developed
in this thesis can be extended and optimised for identification of error sources in experimen-
tal gates and could become useful tools for the characterisation and optimisation of larger
quantum logic circuits. Even without reaching the fault-tolerant regime a probabilistic quan-
tum computer with possibly a few tens of qubits could be optimised with such tools and
could be a test beds for the first significant quantum calculations, possibly even surpassing
classical supercomputers.

An extension of the available and controllable qubit number should also see the rise
of the first proof-of-principle implementations of quantum error-correction protocols. Again
careful analyses of the performance of these codes similar to the analyses of the gate operation
here, could reveal important insights in the required conditions to operate larger scale error
correction codes and should thereby assist in prying open the door to linear optical quantum
computing a little bit further. Just as I hope that this thesis has succeeded in offering
stepping stones between the experimental gates of today and the desired full scale fault
tolerant linear optical quantum computation of the future.



A
The independent photon CZ-gate model

The following is a single state run of the model developed to simulate the independent photon
gate with the parameters set to model the gate with realistic values for all error sources. As
the mathematica code was developed for the numerical solution and not with the idea of
reprinting it in my thesis, it has some test functions embedded that are not strictly necessary
as well as it makes use of some definitions which are loaded in and are not shown explicitly
here. The reason for the reprint here is to merely offer some guidance in the methodology
of the model, should anyone wish to recreate a similar model.

I would also like to note, that a model for the case where three qubits interact in two sub-
sequent gates as described in Chapter 6, to study the impact of the noise sources when more
photons can potentially interact and especially higher order photon terms can contribute in
many additional ways. It turned out though, that the model was to complex to be solved
in mathematica for the higher order photon cases. The utilised structure is by no means
optimised and an improvement in the memory handling might lead to some results here,
but the lack of both time and knowledge have prevented this from occurring so far. Hence
I present with out further ado the code for the DD input state which of course means two
pre-biased photons are injected so that they would give (individually) balanced diagonally
polarised output states.
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In[1]:= Off@General::spell1D
Off@General::spellD

In[3]:= Clear@PDC, Loss, ach, acv, adh, adv, af1, af2, ab1, ab2, ab, af, h, z, a,
b, g, d, n, kc, kd, kf2, kb2, asd, zxc, Gate, NoCoinc, NoCoinc1, NoCoinc2,
NoCoinc3, NoCoinc4, Coinc3Phot, Photon2, Photon3, NoCoinc3, Coinc3Phot,
b, f, aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4, time1, time2D

In[4]:= << "êUsersêtillêDocumentsêMATHEMATICAêLOQC.m"

In[5]:= time1 = AbsoluteTime@D;

In[6]:= schrocoeff@coeff_, ind_D := coeff ITimes üü MapAè!!!!!!!
#! &, ind - 1EM ket@ind - 1D;

ToKets@expr_, modes_, sum_: TrueD := Htmp = CoefficientList@expr, modesD;
tmp = Flatten@MapIndexed@schrocoeff, tmp, 8Length@Dimensions@tmpDD<DD;
If@sum, Plus üü tmp, tmpDL

In[8]:= H* This is the source equation,
givng the probabilitys of creating 2 photon pairs H1 forward,1 backwardL
and 3 Photon Pairs with at least one in each direction. Other
terms and orders are ignored.Removed additional factor of 1ê2
that was added with Andrew and Kevin to compensate Bose factors,
as these are taken care of by the factorials in the fractions.*L

PDC = H1ê H2!LL* 2 ab1 ab2 af1 af2 b f +
H1ê H3!LL* H3 ab1 ab2 af12 af22 b Hf^2L + 3 ab12 ab22 af1 af2 H b^2L fL;

In[9]:= H*Expand@PDCD*L

In[10]:= H* This section polarises the modes that are fed into the gate. a,b,g,
d are the input populations for the desired stateloss needs to introduce
a new mode and relables the modes that go directly to the detectors*L

Polarise =
ReplaceAll @PDC, 8af1 Ø Ha * aah + b * aavL, ab1 Ø Hg * abh + d * abvL, ab2 Ø a4, af2 Ø a3<D;

In[11]:= H*Expand@PolariseDê.8aavØaavêSqrt@3D,abvØabvêSqrt@3D<*L

In[12]:= H* this describes the actions of the gate with
reflectivitiy h for h polarised modes and z for V Polarisation,
the input modes are a and b, c and d being the output modes.*L

Gate = ReplaceAll@Polarise,
8aah Ø H-Sqrt@hD* ach + Sqrt@1 - hD* adhL, abh Ø HSqrt@hD* adh + Sqrt@1 - hD* achL,
aav Ø H-Sqrt@zD* acv + Sqrt@1 - zD* advL, abv Ø HSqrt@zD* adv + Sqrt@1 - zD* acvL<D;

In[13]:= H*This section acts as loss for the individual modes just before detection. The
individual modes are the four spatial modes and two polarisation modes for each
spatial mode in the actual gate. Make sure all loss modes are distinguishable*L

Loss = ReplaceAll@Gate, 8ach Ø ach* Sqrt@kcD + aloss1h* Sqrt@H1 - kcLD,
acv Ø acv *Sqrt@kcD + aloss1v* Sqrt@H1 - kcLD,
adh Ø adh *Sqrt@kdD + aloss2h* Sqrt@H1 - kdLD, adv Ø
adv* Sqrt@kdD + aloss2v* Sqrt@H1 - kdLD, a3 Ø a3* Sqrt@kf2D + aloss3 * Sqrt@H1 - kf2LD,
a4 Ø a4* Sqrt@kb2D + aloss4 * Sqrt@H1 - kb2LD<D;

In[14]:= H* This gives the final contributions for 2 PDC Pairs*L
Photon2 = Coefficient@Loss, 8b* f<D* b * f;

DDfg.nb 1
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In[15]:= H*Sanity check of gate output*L
H*Expand@HPhoton2LêHa3 a4 b fL ê. 8kcØ1,kdØ1,kf2Ø1,kb2Ø1,

hØ1ê3,zØ1,aØSqrt@3Dê2,bØ1ê2,gØSqrt@3Dê2,dØ1ê2 <D*L
In[16]:= H* This section collects the terms that

don' t give coincidences for the two pair input*L

NoCoinc1 = Coefficient@Photon2, 8ach^2<D *ach^2;
NoCoinc2 = Coefficient@Photon2, 8acv^2<D *acv^2;
NoCoinc3 = Coefficient@Photon2, 8adh^2<D *adh^2;
NoCoinc4 = Coefficient@Photon2, 8adv^2<D *adv^2;
NoCoinc5 = Coefficient@Photon2, 8ach* acv<D* ach *acv;
NoCoinc6 = Coefficient@Photon2, 8adh* adv<D* adh *adv;
NoCoinc = NoCoinc1 + NoCoinc2 + NoCoinc3 + NoCoinc4 + NoCoinc5 + NoCoinc6;

In[23]:= H*Check here which terms are removed
by cycling through the different NoCoinc terms.*L

H*Expand@NoCoinc6êHa3 a4 b fL ê. 8kcØ1,ksØ1,kf2Ø1,kb2Ø1,
hØ1ê3,zØ1,aØSqrt@3Dê2,bØ1ê2,gØSqrt@3Dê2,dØ1ê2 <D*L

In[24]:= H* This section returns only those modes
that create coincidences for the two pair input *L

Coinc2Photon = Photon2 - NoCoinc;

In[25]:= H* This selects the output state generated from the three pair-creation cases *L
Photon3 = Expand@

HCoefficient@Loss, Hb^2L* fD* Hb^2L*fL + HCoefficient@Loss, Hf^2L* bD* Hf^2L* bLD;
In[26]:= H*Sanity check of gate output*L

H*Expand@HPhoton3LêHa3 a4 b fL ê. 8kcØ1,kdØ1,kf2Ø1,
kb2Ø1,hØ1ê3,zØ1,aØSqrt@3Dê2,bØ1ê2,gØSqrt@3Dê2,dØ1ê2 <D*L

In[27]:= H*And again collect all terms that don' t yield actual fourfoulds or
more percisely coniceidences in the gate, but for the three pair case*L
NoCoinc3 = Expand@Coefficient@Photon3, 8ach^2 *acv<D * ach^2 * acv +

Coefficient@Photon3, 8acv^2 * ach<D *acv^2 * ach +
Coefficient@Photon3, 8adh^2 * adv<D *adh^2 * adv +
Coefficient@Photon3, 8adv^2 * adh<D *adv^2 * adh +
Coefficient@Photon3, 8ach^3<D* ach^3 +
Coefficient@Photon3, 8acv^3<D* acv^3 +
Coefficient@Photon3, 8adh^3<D* adh^3 +
Coefficient@Photon3, 8adv^3<D* adv^3D;

In[28]:= H* The collection of all contributing terms for the three pair case*L
Chop@Coinc3Photon = Photon3 - NoCoinc3, 10^-6D;

In[29]:= ClearAll@a, b, g, d, h, z, kc, kd, kb2, kf2, b,
f, aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4D

In[30]:= H*Expand@GateDê.8hØ1ê3,zØ1,bØbêSqrt@3D,dØdêSqrt@3D <*L
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In[31]:=
H*Now lets set some values for the variables.*L
h = 0.35; H*Reflection coeff for H*L
z = 0.99; H*Reflection coeff for V*L

kf2 = 0.09597;
kb2 = 0.08883;
H* Photon-Survival or Detector-Coupling Probability for trigger photons*L

kc = 0.04675;
kd = 0.02964;
H* Photon-Survival or Detector-Coupling Probability for gate photons*L
H*kc=kd=kf2=kb2=1;H*ideal detection*L*L

a = Sqrt@3Dê 2; H* H-Component of a-mode*L
b = 1 ê 2; H* V Component of a-mode*L
g = Sqrt@3Dê 2; H* H-Component of b-mode*L
d = 1 ê 2; H* V Component of b-mode*L

b = 2 * Sqrt@0.01085824673785808` êH2 - kb2LDH* backward emission amplitude*L
f = 2 * Sqrt@0.004675078456577784`ê H2 - kf2LD H*forward emission amplitude*L

Out[38]= 0.150751

Out[39]= 0.0991032

In[40]:= H*Set the path and file name to which the output file is writen*L
SetDirectory@"êUsersêtillêDocumentsêMATHEMATICAê

ContainingDataêIPGTheoryêNewSourceEquationêFullGate"D;
FileOutName = "DD.csv";

In[42]:= H*Normalisation check for polarisation modes*L

In[43]:= Abs@aD^2 + Abs@bD^2 ã 1
Abs@gD^2 + Abs@dD^2 ã 1

Out[43]= True

Out[44]= True

In[45]:= H*Addition of dummy variable kkk to the two photon
term to simplify the use of the PostSelect search routine*L

Expand@Coinc2PhotonD;
Coinc2Phot = Expand@Coinc2PhotonD + kkk;

In[47]:= ClearAll@outHH, outHH1, outHV, outHV1, outVH, outVH1, outVV, outVV1D;
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In[48]:= H*The HV-HV POVM*L
outHH = PostSelect@MatchQ@#, ach* adh* a3* a4* _D &D ** Coinc2Phot;
outHH1 = ToKets@outHH, 8ach, acv, adh, adv, a3, a4<D;
HH = Re@HoutHH1 ê. ket@_D Ø 1L* Conjugate@HoutHH1 ê. ket@_D Ø 1LDD

outHV = PostSelect@MatchQ@#, ach* adv* a3* a4* _D &D ** Coinc2Phot;
outHV1 = ToKets@outHV, 8ach, acv, adh, adv, a3, a4<D;
HV = Re@HoutHV1 ê. ket@_D Ø 1L* Conjugate@HoutHV1 ê. ket@_D Ø 1LDD

outVH = PostSelect@MatchQ@#, acv* adh* a3* a4* _D &D ** Coinc2Phot;
outVH1 = ToKets@outVH, 8ach, acv, adh, adv, a3, a4<D;
VH = Re@HoutVH1 ê. ket@_D Ø 1L* Conjugate@HoutVH1 ê. ket@_D Ø 1LDD

outVV = PostSelect@MatchQ@#, acv* adv* a3* a4* _D &D ** Coinc2Phot;
outVV1 = ToKets@outVV, 8ach, acv, adh, adv, a3, a4<D;
VV = Re@HoutVV1 ê. ket@_D Ø 1L* Conjugate@HoutVV1 ê. ket@_D Ø 1LDD

Out[50]= 1.3348 µ 10-10

Out[53]= 1.27589µ 10-10

Out[56]= 1.27589µ 10-10

Out[59]= 1.58264µ 10-10

In[60]:= H* The HV-PlusMinus POVM *L
adh = Hadpl + admiL ê Sqrt@2D;
adv = Hadpl - admiL ê Sqrt@2D;

outHPl = PostSelect@MatchQ@#, ach* adpl* a3* a4* _D &D ** Coinc2Phot;
outHPl1 = ToKets@outHPl, 8ach, acv, adpl, admi, a3, a4<D;
HPl = Re@HoutHPl1 ê. ket@_D Ø 1L* Conjugate@HoutHPl1 ê. ket@_D Ø 1LDD

outHMi = PostSelect@MatchQ@#, ach* admi* a3* a4* _D &D ** Coinc2Phot;
outHMi1 = ToKets@outHMi, 8ach, acv, adpl, admi, a3, a4<D;
HMi = Re@HoutHMi1 ê. ket@_D Ø 1L* Conjugate@HoutHMi1 ê. ket@_D Ø 1LDD

outVPl = PostSelect@MatchQ@#, acv* adpl* a3* a4* _D &D ** Coinc2Phot;
outVPl1 = ToKets@outVPl, 8ach, acv, adpl, admi, a3, a4<D;
VPl = Re@HoutVPl1 ê. ket@_D Ø 1L* Conjugate@HoutVPl1 ê. ket@_D Ø 1LDD

outVMi = PostSelect@MatchQ@#, acv* admi* a3* a4* _D &D ** Coinc2Phot;
outVMi1 = ToKets@outVMi, 8ach, acv, adpl, admi, a3, a4<D;
VMi = Re@HoutVMi1 ê. ket@_D Ø 1L* Conjugate@HoutVMi1 ê. ket@_D Ø 1LDD

Clear@adh, advD;
Out[64]= 3.32343µ 10-14

Out[67]= 2.61036µ 10-10

Out[70]= 2.85028µ 10-10

Out[73]= 8.25329µ 10-13
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In[75]:= H* The HV-RightLeft POVM *L
adh = Hadri + adleL ê Sqrt@2D;
adv = -Â *Hadri - adleL êSqrt@2D;

outHri = PostSelect@MatchQ@#, ach* adri* a3* a4* _D &D ** Coinc2Phot;
outHri1 = ToKets@outHri, 8ach, acv, adri, adle, a3, a4<D;
HRe = Re@HoutHri1 ê. ket@_D Ø 1L* Conjugate@HoutHri1 ê. ket@_D Ø 1LDD

outHle = PostSelect@MatchQ@#, ach* adle* a3* a4* _D &D ** Coinc2Phot;
outHle1 = ToKets@outHle, 8ach, acv, adri, adle, a3, a4<D;
HLe = Re@HoutHle1 ê. ket@_D Ø 1L* Conjugate@HoutHle1 ê. ket@_D Ø 1LDD

outVri = PostSelect@MatchQ@#, acv* adri* a3* a4* _D &D ** Coinc2Phot;
outVri1 = ToKets@outVri, 8ach, acv, adri, adle, a3, a4<D;
VRe = Re@HoutVri1 ê. ket@_D Ø 1L* Conjugate@HoutVri1 ê. ket@_D Ø 1LDD

outVle = PostSelect@MatchQ@#, acv* adle* a3* a4* _D &D ** Coinc2Phot;
outVle1 = ToKets@outVle, 8ach, acv, adri, adle, a3, a4<D;
VLe = Re@HoutVle1 ê. ket@_D Ø 1L* Conjugate@HoutVle1 ê. ket@_D Ø 1LDD

Clear@adh, advD;
Out[79]= 1.30534µ 10-10

Out[82]= 1.30534µ 10-10

Out[85]= 1.42927µ 10-10

Out[88]= 1.42927µ 10-10

In[90]:= H* The PlusMinus-HV POVM *L
ach = Hacpl + acmiL ê Sqrt@2D;
acv = Hacpl - acmiL ê Sqrt@2D;

outPlH = PostSelect@MatchQ@#, acpl* adh* a3* a4* _D &D ** Coinc2Phot;
outPlH1 = ToKets@outPlH, 8acpl, acmi, adh, adv, a3, a4<D;
PlH = Re@HoutPlH1 ê. ket@_D Ø 1L* Conjugate@HoutPlH1 ê. ket@_D Ø 1LDD

outPlV = PostSelect@MatchQ@#, acpl* adv *a3* a4* _D &D ** Coinc2Phot;
outPlV1 = ToKets@outPlV, 8acpl, acmi, adh, adv, a3, a4<D;
PlV = Re@HoutPlV1 ê. ket@_D Ø 1L* Conjugate@HoutPlV1 ê. ket@_D Ø 1LDD

outMiH = PostSelect@MatchQ@#, acmi* adh* a3* a4* _D &D ** Coinc2Phot;
outMiH1 = ToKets@outMiH, 8acpl, acmi, adh, adv, a3, a4<D;
MiH = Re@HoutMiH1 ê. ket@_D Ø 1L* Conjugate@HoutMiH1 ê. ket@_D Ø 1LDD

outMiV = PostSelect@MatchQ@#, acmi* adv *a3* a4* _D &D ** Coinc2Phot;
outMiV1 = ToKets@outMiV, 8acpl, acmi, adh, adv, a3, a4<D;
MiV = Re@HoutMiV1 ê. ket@_D Ø 1L* Conjugate@HoutMiV1 ê. ket@_D Ø 1LDD

Clear@ach, acvD;
Out[94]= 3.32343µ 10-14

Out[97]= 2.85028µ 10-10

Out[100]=

2.61036µ10-10

Out[103]=

8.25329µ10-13
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In[105]:=

H*The PlusMinus-PlusMinus POVM*L

ach = Hacpl + acmiL êSqrt@2D;
acv = Hacpl - acmiL êSqrt@2D;
adh = Hadpl + admiL êSqrt@2D;
adv = Hadpl - admiL êSqrt@2D;

outPlPl = PostSelect@MatchQ@#, acpl * adpl* a3* a4* _D &D ** Coinc2Phot;
outPlPl1 = ToKets@outPlPl, 8acpl, acmi, adpl, admi, a3, a4<D;
PlPl = Re@HoutPlPl1 ê. ket@_D Ø 1L* Conjugate@HoutPlPl1 ê. ket@_D Ø 1LDD

outPlMi = PostSelect@MatchQ@#, acpl * admi* a3* a4* _D &D ** Coinc2Phot;
outPlMi1 = ToKets@outPlMi, 8acpl, acmi, adpl, admi, a3, a4<D;
PlMi = Re@HoutPlMi1 ê. ket@_D Ø 1L* Conjugate@HoutPlMi1 ê. ket@_D Ø 1LDD

outMiPl = PostSelect@MatchQ@#, acmi * adpl* a3* a4* _D &D ** Coinc2Phot;
outMiPl1 = ToKets@outMiPl, 8acpl, acmi, adpl, admi, a3, a4<D;
MiPl = Re@HoutMiPl1 ê. ket@_D Ø 1L* Conjugate@HoutMiPl1 ê. ket@_D Ø 1LDD

outMiMi = PostSelect@MatchQ@#, acmi * admi* a3* a4* _D &D ** Coinc2Phot;
outMiMi1 = ToKets@outMiMi, 8acpl, acmi, adpl, admi, a3, a4<D;
MiMi = Re@HoutMiMi1 ê. ket@_D Ø 1L* Conjugate@HoutMiMi1 ê. ket@_D Ø 1LDD

Clear@ach, acv, adh, advD;

Out[111]=

1.39453µ10-10

Out[114]=

1.45608µ10-10

Out[117]=

1.45608µ10-10

Out[120]=

1.16253µ10-10
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In[122]:=

H*The PlusMinus-RightLeft POVM*L

ach = Hacpl + acmiL êSqrt@2D;
acv = Hacpl - acmiL êSqrt@2D;
adh = Hadre + adleL êSqrt@2D;
adv = -Â * Hadre - adleL ê Sqrt@2D;

outPlRe = PostSelect@MatchQ@#, acpl * adre* a3* a4* _D &D ** Coinc2Phot;
outPlRe1 = ToKets@outPlRe, 8acpl, acmi, adre, adle, a3, a4<D;
PlRe = Re@HoutPlRe1 ê. ket@_D Ø 1L* Conjugate@HoutPlRe1 ê. ket@_D Ø 1LDD

outPlLe = PostSelect@MatchQ@#, acpl * adle* a3* a4* _D &D ** Coinc2Phot;
outPlLe1 = ToKets@outPlLe, 8acpl, acmi, adre, adle, a3, a4<D;
PlLe = Re@HoutPlLe1 ê. ket@_D Ø 1L* Conjugate@HoutPlLe1 ê. ket@_D Ø 1LDD

outMiRe = PostSelect@MatchQ@#, acmi * adre* a3* a4* _D &D ** Coinc2Phot;
outMiRe1 = ToKets@outMiRe, 8acpl, acmi, adre, adle, a3, a4<D;
MiRe = Re@HoutMiRe1 ê. ket@_D Ø 1L* Conjugate@HoutMiRe1 ê. ket@_D Ø 1LDD

outMiLe = PostSelect@MatchQ@#, acmi * adle* a3* a4* _D &D ** Coinc2Phot;
outMiLe1 = ToKets@outMiLe, 8acpl, acmi, adre, adle, a3, a4<D;
MiLe = Re@HoutMiLe1 ê. ket@_D Ø 1L* Conjugate@HoutMiLe1 ê. ket@_D Ø 1LDD

Clear@ach, acv, adh, advD;
Out[128]=

1.42531µ10-10

Out[131]=

1.42531µ10-10

Out[134]=

1.3093µ 10-10

Out[137]=

1.3093µ 10-10
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In[139]:=

H*The RightLeft-HV POVM*L

ach = Hacre + acleL êSqrt@2D;
acv = -Â * Hacre - acleL ê Sqrt@2D;

outReH = PostSelect@MatchQ@#, acre* adh *a3* a4* _D &D ** Coinc2Phot;
outReH1 = ToKets@outReH, 8acre, acle, adh, adv, a3, a4<D;
ReH = Re@HoutReH1 ê. ket@_D Ø 1L* Conjugate@HoutReH1 ê. ket@_D Ø 1LDD

outReV = PostSelect@MatchQ@#, acre * adv* a3* a4* _D &D ** Coinc2Phot;
outReV1 = ToKets@outReV, 8acre, acle, adh, adv, a3, a4<D;
ReV = Re@HoutReV1 ê. ket@_D Ø 1L* Conjugate@HoutReV1 ê. ket@_D Ø 1LDD

outLeH = PostSelect@MatchQ@#, acle* adh *a3* a4* _D &D ** Coinc2Phot;
outLeH1 = ToKets@outLeH, 8acre, acle, adh, adv, a3, a4<D;
LeH = Re@HoutLeH1 ê. ket@_D Ø 1L* Conjugate@HoutLeH1 ê. ket@_D Ø 1LDD

outLeV = PostSelect@MatchQ@#, acle * adv* a3* a4* _D &D ** Coinc2Phot;
outLeV1 = ToKets@outLeV, 8acre, acle, adh, adv, a3, a4<D;
LeV = Re@HoutLeV1 ê. ket@_D Ø 1L* Conjugate@HoutLeV1 ê. ket@_D Ø 1LDD

Clear@ach, acvD;
Out[143]=

1.30534µ10-10

Out[146]=

1.42927µ10-10

Out[149]=

1.30534µ10-10

Out[152]=

1.42927µ10-10

In[154]:=
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In[155]:=

H*The RightLeft-PlusMinus POVM*L

ach = Hacre + acleL êSqrt@2D;
acv = -Â * Hacre - acleL ê Sqrt@2D;
adh = Hadpl + admiL êSqrt@2D;
adv = Hadpl - admiL êSqrt@2D;

outRepl = PostSelect@MatchQ@#, acre * adpl* a3* a4* _D &D ** Coinc2Phot;
outRepl1 = ToKets@outRepl, 8acre, acle, adpl, admi, a3, a4<D;
RePl = Re@HoutRepl1 ê. ket@_D Ø 1L* Conjugate@HoutRepl1 ê. ket@_D Ø 1LDD

outRemi = PostSelect@MatchQ@#, acre * admi* a3* a4* _D &D ** Coinc2Phot;
outRemi1 = ToKets@outRemi, 8acre, acle, adpl, admi, a3, a4<D;
ReMi = Re@HoutRemi1 ê. ket@_D Ø 1L* Conjugate@HoutRemi1 ê. ket@_D Ø 1LDD

outLepl = PostSelect@MatchQ@#, acle * adpl* a3* a4* _D &D ** Coinc2Phot;
outLepl1 = ToKets@outLepl, 8acre, acle, adpl, admi, a3, a4<D;
LePl = Re@HoutLepl1 ê. ket@_D Ø 1L* Conjugate@HoutLepl1 ê. ket@_D Ø 1LDD

outLemi = PostSelect@MatchQ@#, acle * admi* a3* a4* _D &D ** Coinc2Phot;
outLemi1 = ToKets@outLemi, 8acre, acle, adpl, admi, a3, a4<D;
LeMi = Re@HoutLemi1 ê. ket@_D Ø 1L* Conjugate@HoutLemi1 ê. ket@_D Ø 1LDD

Clear@ach, acv, adh, advD;
Out[161]=

1.42531µ10-10

Out[164]=

1.3093µ 10-10

Out[167]=

1.42531µ10-10

Out[170]=

1.3093µ 10-10
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In[172]:=

H*The RightLeft-RightLeft POVM*L

ach = Hacre + acleL êSqrt@2D;
acv = -Â Hacre - acleL ê Sqrt@2D;
adh = Hadre + adleL êSqrt@2D;
adv = -Â * Hadre - adleL ê Sqrt@2D;

outReRe = PostSelect@MatchQ@#, acre * adre* a3* a4* _D &D ** Coinc2Phot;
outReRe1 = ToKets@outReRe, 8acre, acle, adre, adle, a3, a4<D;
ReRe = Re@HoutReRe1 ê. ket@_D Ø 1L* Conjugate@HoutReRe1 ê. ket@_D Ø 1LDD

outReLe = PostSelect@MatchQ@#, acre * adle* a3* a4* _D &D ** Coinc2Phot;
outReLe1 = ToKets@outReLe, 8acre, acle, adre, adle, a3, a4<D;
ReLe = Re@HoutReLe1 ê. ket@_D Ø 1L* Conjugate@HoutReLe1 ê. ket@_D Ø 1LDD

outLere = PostSelect@MatchQ@#, acle * adre* a3* a4* _D &D ** Coinc2Phot;
outLere1 = ToKets@outLere, 8acre, acle, adre, adle, a3, a4<D;
LeRe = Re@HoutLere1 ê. ket@_D Ø 1L* Conjugate@HoutLere1 ê. ket@_D Ø 1LDD

outLele = PostSelect@MatchQ@#, acle * adle* a3* a4* _D &D ** Coinc2Phot;
outLele1 = ToKets@outLele, 8acre, acle, adre, adle, a3, a4<D;
LeLe = Re@HoutLele1 ê. ket@_D Ø 1L* Conjugate@HoutLele1 ê. ket@_D Ø 1LDD

Clear@ach, acv, adh, advD;
Out[178]=

2.73197µ10-10

Out[181]=

2.63664µ10-13

Out[184]=

2.63664µ10-13

Out[187]=

2.73197µ10-10

In[189]:=
MeasuredCounts = Re@8HH, HV, HPl, HMi, HRe, HLe, VH, VV, VPl, VMi, VRe,

VLe, PlH, PlV, PlPl, PlMi, PlRe, PlLe, MiH, MiV, MiPl, MiMi, MiRe, MiLe,
ReH, ReV, RePl, ReMi, ReRe, ReLe, LeH, LeV, LePl, LeMi, LeRe, LeLe<D;

In[190]:=

H*Here is the tensor product definition*L
kron@u_ ê; MatrixQ@uD, v_ ê; MatrixQ@vDD := Module@8w<, w = Outer@Times, u, vD;

Partition@Flatten@Transpose@w, 81, 3, 2, 4<DD,
Dimensions@wD@@2DD Dimensions@wD@@4DDDD;

SetAttributes@kron, OneIdentityD;
kron@u_, v_, w__D := Fold@kron, u, 8v, w<D;
CircleTimes = kron;
<< Graphics`Graphics3D`
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In[195]:=

H*This is the matrix from Daniel' s paper*L
pM = 88t1, 0, 0, 0<, 8t5 + I *t6, t2, 0, 0<,

8t7 + I * t8, t9 + I * t10, t3, 0<, 8t11 + I * t12, t13 + I * t14, t15 + I *t16, t4<<;
pMd = 88t1, t5 - I* t6, t7 - I * t8, t11 - I* t12<, 80, t2, t9 - I * t10, t13 - I* t14<,

80, 0, t3, t15 - I * t16<, 80, 0, 0, t4<<;
H*pMêêMatrixForm*L
H*The product of pM and pMd makes the
parametrized density matrix guaranteed to be a physical state*L

GeneralDM = Simplify@pMd.pMD;
Prediction@DM_, State_D := Conjugate@Flatten@StateDD.DM.Flatten@StateD;
H*GeneralDMêêMatrixForm*L

In[199]:=
H*Define the single qubit measurements*L
H = 881<, 80<<;
V = 880<, 81<<;
Pl = 881 êSqrt@2D<, 81ê Sqrt@2D<<;
Mi = 881ê Sqrt@2D<, 8-1 ê Sqrt@2D<<;
Ri = 881 êSqrt@2D<, 8Iê Sqrt@2D<<;
Le = 881 êSqrt@2D<, 8-I ê Sqrt@2D<<;

In[205]:=

MeasuredStates =
8kron@H, HD, kron@H, VD, kron@H, PlD, kron@H, MiD, kron@H, RiD, kron@H, LeD,
kron@V, HD, kron@V, VD, kron@V, PlD, kron@V, MiD, kron@V, RiD, kron@V, LeD,
kron@Pl, HD, kron@Pl, VD, kron@Pl, PlD, kron@Pl, MiD, kron@Pl, RiD, kron@Pl, LeD,
kron@Mi, HD, kron@Mi, VD, kron@Mi, PlD, kron@Mi, MiD, kron@Mi, RiD, kron@Mi, LeD,
kron@Ri, HD, kron@Ri, VD, kron@Ri, PlD, kron@Ri, MiD, kron@Ri, RiD, kron@Ri, LeD,
kron@Le, HD, kron@Le, VD, kron@Le, PlD, kron@Le, MiD, kron@Le, RiD, kron@Le, LeD<;

In[206]:=

MaxLikError@DM_D :=
Sum@Simplify@HPrediction@DM, MeasuredStates@@iDDD - MeasuredCounts@@iDDL^2D,
8i, Length@MeasuredStatesD<D

BadnessPolynomial = MaxLikError@GeneralDMD;
MinimizeOutput = NMinimize@BadnessPolynomial, 8t1, t2, t3, t4, t5, t6,

t7, t8, t9, t10, t11, t12, t13, t14, t15, t16<, MaxIterations Ø 1000D;
UnnormalizedDensityMatrix = GeneralDM ê. MinimizeOutput@@2DD;
DensityMatrix =
UnnormalizedDensityMatrixê Sum@UnnormalizedDensityMatrix@@i, iDD, 8i, 4<D;

In[211]:=

Chop@DensityMatrixD êê MatrixForm

Out[211]//MatrixForm=

i

k

jjjjjjjjjjjjjjj

0.244056 -0.23861 + 3.16228µ 10-9 Â -0.23861 - 1.0873 µ 10-9 Â -0.26575

-0.23861 - 3.16228µ 10-9 Â 0.233286 0.233286 + 1.10301µ 10-9 Â 0.25982

-0.23861 + 1.0873 µ10-9 Â 0.233286 - 1.10301µ 10-9 Â 0.233286 0.25982
-0.26575 0.25982 0.25982 0.289373

DDfg.nb 11



167

In[212]:=

BarChart3D@Re@DensityMatrixD, XSpacing Ø 0.4,
YSpacing Ø 0.4, PlotRange Ø 880.5, 4.5<, 80.5, 4.5<, 8-0.35, 1.1<<,
Ticks -> 8881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<,

881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<, Automatic<, ViewPoint Ø 82, 0.8, 1.2<D
BarChart3D@Im@DensityMatrixD, XSpacing Ø 0.4, YSpacing Ø 0.4,
PlotRange Ø 880.5, 4.5<, 80.5, 4.5<, 8-0.35, 1.1<<,
Ticks -> 8881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<,

881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<, Automatic<, ViewPoint Ø 82, 0.8, 1.2<D
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Out[212]=

Ü Graphics3D Ü
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Out[213]=

Ü Graphics3D Ü
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In[214]:=

H* And now for the 3 Photons in the gate terms. Again use kkk as a dummy variable*L

Chop@Coinc3Phot = Coinc3Photon + kkkD;

In[215]:=

H*The HV-HV POVM*L
outHH2 = PostSelect@MatchQ@#, ach_ * adh* _ » ach* adh_ * _ » ach* adh* _D &D **

Chop@Coinc3Phot, 10^H-20LD;
outHH = PostSelect@MatchQ@#, a3_ *a4* _ » a3* a4_ * _ » a3* a4* _D &D ** HoutHH2 + ppp + lllL;
HHx = ToKets@outHH,

8ach, acv, adh, adv, a3, a4, aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;
If@TrueQ@HHx@@0DD ã TimesD, outHH1 = HHx* Conjugate@HHxD,
outHH1 = Sum@HHx@@iDD* Conjugate@HHx@@iDDD, 8i, 1, Length@HHxD<DD;

HH1 = Re@HoutHH1 ê. ket@_D Ø 1LD

outHV2 = PostSelect@MatchQ@#, ach_ * adv* _ » ach* adv_ * _ » ach* adv* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outHV = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D ** HoutHV2 + ppp + lllL;
HVx = ToKets@outHV,

8ach, acv, adh, adv, a3, a4, aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;
If@TrueQ@HVx@@0DD ã TimesD, outHV1 = HVx* Conjugate@HVxD,
outHV1 = Sum@HVx@@iDD* Conjugate@HVx@@iDDD, 8i, 1, Length@HVxD<DD;

HV1 = Re@HoutHV1 ê. ket@_D Ø 1LD

outVH2 = PostSelect@MatchQ@#, acv_ * adh* _ » acv* adh_ * _ » acv* adh* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outVH = PostSelect@MatchQ@#, a3_ *a4* _ » a3* a4_ * _ » a3* a4* _D &D ** HoutVH2 + ppp + lllL;
VHx = ToKets@outVH,

8ach, acv, adh, adv, a3, a4, aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;
If@TrueQ@VHx@@0DD ã TimesD, outVH1 = VHx* Conjugate@VHxD,
outVH1 = Sum@VHx@@iDD* Conjugate@VHx@@iDDD, 8i, 1, Length@VHxD<DD;

VH1 = Re@HoutVH1 ê. ket@_D Ø 1LD

outVV2 = PostSelect@MatchQ@#, acv_ * adv* _ » acv* adv_ * _ » acv* adv* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outVV = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D ** HoutVV2 + ppp + lllL;
VVx = ToKets@outVV,

8ach, acv, adh, adv, a3, a4, aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;
If@TrueQ@VVx@@0DD ã TimesD, outVV1 = VVx* Conjugate@VVxD,
outVV1 = Sum@VVx@@iDD* Conjugate@VVx@@iDDD, 8i, 1, Length@VVxD<DD;

VV1 = Re@HoutVV1 ê. ket@_D Ø 1LD
Out[219]=

5.77514µ10-11

Out[224]=

4.29153µ10-11

Out[229]=

2.76898µ10-11

Out[234]=

1.97826µ10-11
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In[235]:=

H* The HV-PlusMinus POVM *L
adh = Hadpl + admiL êSqrt@2D;
adv = Hadpl - admiL êSqrt@2D;

outHPl2 = PostSelect@MatchQ@#, ach_ * adpl* _ » ach* adpl_ * _ » ach * adpl* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outHPl = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutHPl2 + ppp + lllL;

HPlx = ToKets@outHPl, 8ach, acv, adpl, admi, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@HPlx@@0DD ã TimesD, outHPl1 = HPlx *Conjugate@HPlxD,
outHPl1 = Sum@HPlx@@iDD* Conjugate@HPlx@@iDDD, 8i, 1, Length@HPlxD<DD;

HPl1 = Re@HoutHPl1 ê. ket@_D Ø 1LD

outHMi2 = PostSelect@MatchQ@#, ach_ * admi* _ » ach* admi_ * _ » ach * admi* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outHMi = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutHMi2 + ppp + lllL;

HMix = ToKets@outHMi, 8ach, acv, adpl, admi, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@HMix@@0DD ã TimesD, outHMi1 = HMix *Conjugate@HMixD,
outHMi1 = Sum@HMix@@iDD* Conjugate@HMix@@iDDD, 8i, 1, Length@HMixD<DD;

HMi1 = Re@HoutHMi1 ê. ket@_D Ø 1LD

outVPl2 = PostSelect@MatchQ@#, acv_ * adpl* _ » acv* adpl_ * _ » acv * adpl* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outVPl = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutVPl2 + ppp + lllL;

VPlx = ToKets@outVPl, 8ach, acv, adpl, admi, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@VPlx@@0DD ã TimesD, outVPl1 = VPlx *Conjugate@VPlxD,
outVPl1 = Sum@VPlx@@iDD* Conjugate@VPlx@@iDDD, 8i, 1, Length@VPlxD<DD;

VPl1 = Re@HoutVPl1 ê. ket@_D Ø 1LD

outVMi2 = PostSelect@MatchQ@#, acv_ * admi* _ » acv* admi_ * _ » acv * admi* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outVMi = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutVMi2 + ppp + lllL;

VMix = ToKets@outVMi, 8ach, acv, adpl, admi, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@VMi@@0DD ã TimesD, outVMi1 = VMix* Conjugate@VMixD,
outVMi1 = Sum@VMix@@iDD* Conjugate@VMix@@iDDD, 8i, 1, Length@VMixD<DD;

VMi1 = Re@HoutVMi1 ê. ket@_D Ø 1LD

Clear@adh, advD;
Out[241]=

6.34599µ10-11

Out[246]=

3.73657µ10-11

Out[251]=

4.2135µ 10-11

Out[256]=

5.22917µ10-12
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In[258]:=

H* The HV-RightLeft POVM *L
adh = Hadri + adleL êSqrt@2D;
adv = -Â * Hadri - adleL ê Sqrt@2D;

outHRe2 = PostSelect@MatchQ@#, ach_ * adri* _ » ach* adri_ * _ » ach * adri* _D &D **
Expand@Chop@Coinc3Phot, 10^H-20LDD;

outHRe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutHRe2 + ppp + lllL;

HRex = ToKets@outHRe, 8ach, acv, adri, adle, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@HRex@@0DD ã TimesD, outHRe1 = HRex *Conjugate@HRexD,
outHRe1 = Sum@HRex@@iDD* Conjugate@HRex@@iDDD, 8i, 1, Length@HRexD<DD;

HRe1 = Re@HoutHRe1 ê. ket@_D Ø 1LD

outHLe2 = PostSelect@MatchQ@#, ach_ * adle* _ » ach* adle_ * _ » ach * adle* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outHLe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutHLe2 + ppp + lllL;

HLex = ToKets@outHLe, 8ach, acv, adri, adle, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@HLex@@0DD ã TimesD, outHLe1 = HLex *Conjugate@HLexD,
outHLe1 = Sum@HLex@@iDD* Conjugate@HLex@@iDDD, 8i, 1, Length@HLexD<DD;

HLe1 = Re@HoutHLe1 ê. ket@_D Ø 1LD

outVRe2 = PostSelect@MatchQ@#, acv_ * adri* _ » acv* adri_ * _ » acv * adri* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outVRe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutVRe2 + ppp + lllL;

VRex = ToKets@outVRe, 8ach, acv, adri, adle, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@VRex@@0DD ã TimesD, outVRe1 = VRex *Conjugate@VRexD,
outVRe1 = Sum@VRex@@iDD* Conjugate@VRex@@iDDD, 8i, 1, Length@VRexD<DD;

VRe1 = Re@HoutVRe1 ê. ket@_D Ø 1LD

outVLe2 = PostSelect@MatchQ@#, acv_ * adle* _ » acv* adle_ * _ » acv * adle* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outVLe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutVLe2 + ppp + lllL;

VLex = ToKets@outVLe, 8ach, acv, adri, adle, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@VLex@@0DD ã TimesD, outVLe1 = VLex *Conjugate@VLexD,
outVLe1 = Sum@VLex@@iDD* Conjugate@VLex@@iDDD, 8i, 1, Length@VLexD<DD;

VLe1 = Re@HoutVLe1 ê. ket@_D Ø 1LD

Clear@adh, advD;
Out[264]=

5.02997µ10-11

Out[269]=

5.02997µ10-11

Out[274]=

2.37328µ10-11

Out[279]=

2.37328µ10-11
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In[281]:=

H* The PlusMinus-HV POVM *L
ach = Hacpl + acmiL êSqrt@2D;
acv = Hacpl - acmiL êSqrt@2D;

outPlH2 = PostSelect@MatchQ@#, acpl_ * adh* _ » acpl* adh_ * _ » acpl * adh* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outPlH = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutPlH2 + ppp + lllL;

PlHx = ToKets@outPlH, 8acpl, acmi, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@PlHx@@0DD ã TimesD, outPlH1 = PlHx *Conjugate@PlHxD,
outPlH1 = Sum@PlHx@@iDD* Conjugate@PlHx@@iDDD, 8i, 1, Length@PlHxD<DD;

PlH1 = Re@HoutPlH1 ê. ket@_D Ø 1LD

outPlV2 = PostSelect@MatchQ@#, acpl_ * adv* _ » acpl* adv_ * _ » acpl * adv* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outPlV = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3*a4* _D &D **
HoutPlV2 + ppp + lllL;

PlVx = ToKets@outPlV, 8acpl, acmi, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@PlVx@@0DD ã TimesD, outPlV1 = PlVx *Conjugate@PlVxD,
outPlV1 = Sum@PlVx@@iDD* Conjugate@PlVx@@iDDD, 8i, 1, Length@PlVxD<DD;

PlV1 = Re@HoutPlV1 ê. ket@_D Ø 1LD

outMiH2 = PostSelect@MatchQ@#, acmi_ * adh* _ » acmi* adh_ * _ » acmi * adh* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outMiH = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutMiH2 + ppp + lllL;

MiHx = ToKets@outMiH, 8acpl, acmi, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@MiHx@@0DD ã TimesD, outMiH1 = MiHx *Conjugate@MiHxD,
outMiH1 = Sum@MiHx@@iDD* Conjugate@MiHx@@iDDD, 8i, 1, Length@MiHxD<DD;

MiH1 = Re@HoutMiH1 ê. ket@_D Ø 1LD

outMiV2 = PostSelect@MatchQ@#, acmi_ * adv* _ » acmi* adv_ * _ » acmi * adv* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outMiV = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3*a4* _D &D **
HoutMiV2 + ppp + lllL;

MiVx = ToKets@outMiV, 8acpl, acmi, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@MiVx@@0DD ã TimesD, outMiV1 = MiVx *Conjugate@MiVxD,
outMiV1 = Sum@MiVx@@iDD* Conjugate@MiVx@@iDDD, 8i, 1, Length@MiVxD<DD;

MiV1 = Re@HoutMiV1 ê. ket@_D Ø 1LD

Clear@ach, acvD;
Out[287]=

4.07672µ10-11

Out[292]=

5.0525µ 10-11

Out[297]=

4.45395µ10-11

Out[302]=

1.20101µ10-11
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172 The independent photon CZ-gate model

In[304]:=

H*The PlusMinus-PlusMinus POVM*L

ach = Hacpl + acmiL êSqrt@2D;
acv = Hacpl - acmiL êSqrt@2D;
adh = Hadpl + admiL êSqrt@2D;
adv = Hadpl - admiL êSqrt@2D;

outPlPl2 = PostSelect@MatchQ@#, acpl_ * adpl * _ » acpl *adpl_ * _ » acpl* adpl * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outPlPl = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutPlPl2 + ppp + lllL;

PlPlx = ToKets@outPlPl, 8acpl, acmi, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@PlPlx@@0DD ã TimesD, outPlPl1 = PlPlx* Conjugate@PlPlxD,
outPlPl1 = Sum@PlPlx@@iDD*Conjugate@PlPlx@@iDDD, 8i, 1, Length@PlPlxD<DD;

PlPl1 = Re@HoutPlPl1 ê. ket@_D Ø 1LD

outPlMi2 = PostSelect@MatchQ@#, acpl_ * admi * _ » acpl *admi_ * _ » acpl* admi * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outPlMi = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutPlMi2 + ppp + lllL;

PlMix = ToKets@outPlMi, 8acpl, acmi, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@PlMix@@0DD ã TimesD, outPlMi1 = PlMix* Conjugate@PlMixD,
outPlMi1 = Sum@PlMix@@iDD*Conjugate@PlMix@@iDDD, 8i, 1, Length@PlMixD<DD;

PlMi1 = Re@HoutPlMi1 ê. ket@_D Ø 1LD

outMiPl2 = PostSelect@MatchQ@#, acmi_ * adpl * _ » acmi *adpl_ * _ » acmi* adpl * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outMiPl = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutMiPl2 + ppp + lllL;

MiPlx = ToKets@outMiPl, 8acpl, acmi, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@MiPlx@@0DD ã TimesD, outMiPl1 = MiPlx* Conjugate@MiPlxD,
outMiPl1 = Sum@MiPlx@@iDD* Conjugate@MiPlx@@iDDD, 8i, 1, Length@MiPlxD<DD;

MiPl1 = Re@HoutMiPl1 ê. ket@_D Ø 1LD

outMiMi2 = PostSelect@MatchQ@#, acmi_ * admi * _ » acmi *admi_ * _ » acmi* admi * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outMiMi = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutMiMi2 + ppp + lllL;

MiMix = ToKets@outMiMi, 8acpl, acmi, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@MiMix@@0DD ã TimesD, outMiMi1 = MiMix* Conjugate@MiMixD,
outMiMi1 = Sum@MiMix@@iDD* Conjugate@MiMix@@iDDD, 8i, 1, Length@MiMixD<DD;

MiMi1 = Re@HoutMiMi1 ê. ket@_D Ø 1LD

Clear@ach, acv, adh, advD;

Out[312]=

6.30406µ10-11

Out[317]=

2.83034µ10-11

Out[322]=

4.21579µ10-11

Out[327]=

1.43907µ10-11
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In[329]:=

H*The PlusMinus-RightLeft POVM*L

ach = Hacpl + acmiL êSqrt@2D;
acv = Hacpl - acmiL êSqrt@2D;
adh = Hadre + adleL êSqrt@2D;
adv = -Â * Hadre - adleL ê Sqrt@2D;

outPlRe2 = PostSelect@MatchQ@#, acpl_ * adre * _ » acpl *adre_ * _ » acpl* adre * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outPlRe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutPlRe2 + ppp + lllL;

PlRex = ToKets@outPlRe, 8acpl, acmi, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@PlRex@@0DD ã TimesD, outPlRe1 = PlRex* Conjugate@PlRexD,
outPlRe1 = Sum@PlRex@@iDD*Conjugate@PlRex@@iDDD, 8i, 1, Length@PlRexD<DD;

PlRe1 = Re@HoutPlRe1 ê. ket@_D Ø 1LD

outPlLe2 = PostSelect@MatchQ@#, acpl_ * adle * _ » acpl *adle_ * _ » acpl* adle * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outPlLe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutPlLe2 + ppp + lllL;

PlLex = ToKets@outPlLe, 8acpl, acmi, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@PlLex@@0DD ã TimesD, outPlLe1 = PlLex* Conjugate@PlLexD,
outPlLe1 = Sum@PlLex@@iDD*Conjugate@PlLex@@iDDD, 8i, 1, Length@PlLexD<DD;

PlLe1 = Re@HoutPlLe1 ê. ket@_D Ø 1LD

outMiRe2 = PostSelect@MatchQ@#, acmi_ * adre * _ » acmi *adre_ * _ » acmi* adre * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outMiRe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutMiRe2 + ppp + lllL;

MiRex = ToKets@outMiRe, 8acpl, acmi, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@MiRex@@0DD ã TimesD, outMiRe1 = MiRex* Conjugate@MiRexD,
outMiRe1 = Sum@MiRex@@iDD* Conjugate@MiRex@@iDDD, 8i, 1, Length@MiRexD<DD;

MiRe1 = Re@HoutMiRe1 ê. ket@_D Ø 1LD

outMiLe2 = PostSelect@MatchQ@#, acmi_ * adle * _ » acmi *adle_ * _ » acmi* adle * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outMiLe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutMiLe2 + ppp + lllL;

MiLex = ToKets@outMiLe, 8acpl, acmi, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@MiLex@@0DD ã TimesD, outMiLe1 = MiLex* Conjugate@MiLexD,
outMiLe1 = Sum@MiLex@@iDD* Conjugate@MiLex@@iDDD, 8i, 1, Length@MiLexD<DD;

MiLe1 = Re@HoutMiLe1 ê. ket@_D Ø 1LD

Clear@ach, acv, adh, advD;
Out[337]=

4.55871µ10-11

Out[342]=

4.55871µ10-11

Out[347]=

2.82968µ10-11

Out[352]=

2.82968µ10-11
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In[354]:=

H*The RightLeft-HV POVM*L

ach = Hacre + acleL êSqrt@2D;
acv = -Â * Hacre - acleL ê Sqrt@2D;

outReH2 = PostSelect@MatchQ@#, acre_ * adh* _ » acre* adh_ * _ » acre * adh* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outReH = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutReH2 + ppp + lllL;

ReHx = ToKets@outReH, 8acre, acle, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@ReHx@@0DD ã TimesD, outReH1 = ReHx *Conjugate@ReHxD,
outReH1 = Sum@ReHx@@iDD* Conjugate@ReHx@@iDDD, 8i, 1, Length@ReHxD<DD;

ReH1 = Re@HoutReH1 ê. ket@_D Ø 1LD

outReV2 = PostSelect@MatchQ@#, acre_ * adv* _ » acre* adv_ * _ » acre * adv* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outReV = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3*a4* _D &D **
HoutReV2 + ppp + lllL;

ReVx = ToKets@outReV, 8acre, acle, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@ReVx@@0DD ã TimesD, outReV1 = ReVx *Conjugate@ReVxD,
outReV1 = Sum@ReVx@@iDD* Conjugate@ReVx@@iDDD, 8i, 1, Length@ReVxD<DD;

ReV1 = Re@HoutReV1 ê. ket@_D Ø 1LD

outLeH2 = PostSelect@MatchQ@#, acle_ * adh* _ » acle* adh_ * _ » acle * adh* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outLeH = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutLeH2 + ppp + lllL;

LeHx = ToKets@outLeH, 8acre, acle, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@LeHx@@0DD ã TimesD, outLeH1 = LeHx *Conjugate@LeHxD,
outLeH1 = Sum@LeHx@@iDD* Conjugate@LeHx@@iDDD, 8i, 1, Length@LeHxD<DD;

LeH1 = Re@HoutLeH1 ê. ket@_D Ø 1LD

outLeV2 = PostSelect@MatchQ@#, acle_ * adv* _ » acle* adv_ * _ » acle * adv* _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outLeV = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3*a4* _D &D **
HoutLeV2 + ppp + lllL;

LeVx = ToKets@outLeV, 8acre, acle, adh, adv, a3, a4, aloss1h,
aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@LeVx@@0DD ã TimesD, outLeV1 = LeVx *Conjugate@LeVxD,
outLeV1 = Sum@LeVx@@iDD* Conjugate@LeVx@@iDDD, 8i, 1, Length@LeVxD<DD;

LeV1 = Re@HoutLeV1 ê. ket@_D Ø 1LD

Clear@ach, acvD;
Out[360]=

4.25792µ10-11

Out[365]=

3.13377µ10-11

Out[370]=

4.25792µ10-11

Out[375]=

3.13377µ10-11
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In[377]:=

H*The RightLeft-PlusMinus POVM*L

ach = Hacre + acleL êSqrt@2D;
acv = -Â * Hacre - acleL ê Sqrt@2D;
adh = Hadpl + admiL êSqrt@2D;
adv = Hadpl - admiL êSqrt@2D;

outRePl2 = PostSelect@MatchQ@#, acre_ * adpl * _ » acre *adpl_ * _ » acre* adpl * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outRePl = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutRePl2 + ppp + lllL;

RePlx = ToKets@outRePl, 8acre, acle, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@RePlx@@0DD ã TimesD, outRePl1 = RePlx* Conjugate@RePlxD,
outRePl1 = Sum@RePlx@@iDD*Conjugate@RePlx@@iDDD, 8i, 1, Length@RePlxD<DD;

RePl1 = Re@HoutRePl1 ê. ket@_D Ø 1LD

outReMi2 = PostSelect@MatchQ@#, acre_ * admi * _ » acre *admi_ * _ » acre* admi * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outReMi = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutReMi2 + ppp + lllL;

ReMix = ToKets@outReMi, 8acre, acle, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@ReMix@@0DD ã TimesD, outReMi1 = ReMix* Conjugate@ReMixD,
outReMi1 = Sum@ReMix@@iDD*Conjugate@ReMix@@iDDD, 8i, 1, Length@ReMixD<DD;

ReMi1 = Re@HoutReMi1 ê. ket@_D Ø 1LD

outLePl2 = PostSelect@MatchQ@#, acle_ * adpl * _ » acle *adpl_ * _ » acle* adpl * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outLePl = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutLePl2 + ppp + lllL;

LePlx = ToKets@outLePl, 8acre, acle, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@LePlx@@0DD ã TimesD, outLePl1 = LePlx* Conjugate@LePlxD,
outLePl1 = Sum@LePlx@@iDD*Conjugate@LePlx@@iDDD, 8i, 1, Length@LePlxD<DD;

LePl1 = Re@HoutLePl1 ê. ket@_D Ø 1LD

outLeMi2 = PostSelect@MatchQ@#, acle_ * admi * _ » acle *admi_ * _ » acle* admi * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outLeMi = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutLeMi2 + ppp + lllL;

LeMix = ToKets@outLeMi, 8acre, acle, adpl, admi, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@LeMix@@0DD ã TimesD, outLeMi1 = LeMix* Conjugate@LeMixD,
outLeMi1 = Sum@LeMix@@iDD*Conjugate@LeMix@@iDDD, 8i, 1, Length@LeMixD<DD;

LeMi1 = Re@HoutLeMi1 ê. ket@_D Ø 1LD

Clear@ach, acv, adh, advD;
Out[385]=

5.25793µ10-11

Out[390]=

2.13629µ10-11

Out[395]=

5.25793µ10-11

Out[400]=

2.13629µ10-11
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In[402]:=

H*The RightLeft-RightLeft POVM*L

ach = Hacre + acleL êSqrt@2D;
acv = -Â Hacre - acleL ê Sqrt@2D;
adh = Hadre + adleL êSqrt@2D;
adv = -Â * Hadre - adleL ê Sqrt@2D;

outReRe2 = PostSelect@MatchQ@#, acre_ * adre * _ » acre *adre_ * _ » acre* adre * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outReRe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutReRe2 + ppp + lllL;

ReRex = ToKets@outReRe, 8acre, acle, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@ReRex@@0DD ã TimesD, outReRe1 = ReRex* Conjugate@ReRexD,
outReRe1 = Sum@ReRex@@iDD*Conjugate@ReRex@@iDDD, 8i, 1, Length@ReRexD<DD;

ReRe1 = Re@HoutReRe1 ê. ket@_D Ø 1LD

outReLe2 = PostSelect@MatchQ@#, acre_ * adle * _ » acre *adle_ * _ » acre* adle * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outReLe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutReLe2 + ppp + lllL;

ReLex = ToKets@outReLe, 8acre, acle, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@ReLex@@0DD ã TimesD, outReLe1 = ReLex* Conjugate@ReLexD,
outReLe1 = Sum@ReLex@@iDD*Conjugate@ReLex@@iDDD, 8i, 1, Length@ReLexD<DD;

ReLe1 = Re@HoutReLe1 ê. ket@_D Ø 1LD

outLeRe2 = PostSelect@MatchQ@#, acle_ * adre * _ » acle *adre_ * _ » acle* adre * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outLeRe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutLeRe2 + ppp + lllL;

LeRex = ToKets@outLeRe, 8acre, acle, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@LeRex@@0DD ã TimesD, outLeRe1 = LeRex* Conjugate@LeRexD,
outLeRe1 = Sum@LeRex@@iDD*Conjugate@LeRex@@iDDD, 8i, 1, Length@LeRexD<D,D;

LeRe1 = Re@HoutLeRe1 ê. ket@_D Ø 1 LD

outLeLe2 = PostSelect@MatchQ@#, acle_ * adle * _ » acle *adle_ * _ » acle* adle * _D &D **
Chop@Coinc3Phot, 10^H-20LD;

outLeLe = PostSelect@MatchQ@#, a3_ * a4* _ » a3* a4_ * _ » a3* a4* _D &D **
HoutLeLe2 + ppp + lllL;

LeLex = ToKets@outLeLe, 8acre, acle, adre, adle, a3, a4,
aloss1h, aloss1v, aloss2h, aloss2v, aloss3, aloss4<D;

If@TrueQ@LeLex@@0DD ã TimesD, outLeLe1 = LeLex* Conjugate@LeLexD,
outLeLe1 = Sum@LeLex@@iDD*Conjugate@LeLex@@iDDD, 8i, 1, Length@LeLexD<DD;

LeLe1 = Re@HoutLeLe1 ê. ket@_D Ø 1LD

Clear@ach, acv, adh, advD;

Out[410]=

5.35749µ10-11

Out[415]=

2.03049µ10-11

Out[420]=

2.03049µ10-11

Out[425]=

5.35749µ10-11
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In[427]:=

N@MeasuredCounts1 =
Re@8HH1, HV1, HPl1, HMi1, HRe1, HLe1, VH1, VV1, VPl1, VMi1, VRe1, VLe1, PlH1, PlV1,
PlPl1, PlMi1, PlRe1, PlLe1, MiH1, MiV1, MiPl1, MiMi1, MiRe1, MiLe1, ReH1,
ReV1, RePl1, ReMi1, ReRe1, ReLe1, LeH1, LeV1, LePl1, LeMi1, LeRe1, LeLe1<DD;

In[428]:=

MaxLikError1@DM_D :=
Sum@Simplify@HPrediction@DM, MeasuredStates@@iDDD - MeasuredCounts1@@iDDL^2D,
8i, Length@MeasuredStatesD<D

BadnessPolynomial1 = MaxLikError1@GeneralDMD;
MinimizeOutput1 = NMinimize@BadnessPolynomial1, 8t1, t2, t3, t4, t5, t6,

t7, t8, t9, t10, t11, t12, t13, t14, t15, t16<, MaxIterations Ø 1000D;
UnnormalizedDensityMatrix1 = GeneralDM ê. MinimizeOutput1@@2DD;
DensityMatrix1 =
UnnormalizedDensityMatrix1ê Sum@UnnormalizedDensityMatrix1@@i, iDD, 8i, 4<D;

Chop@DensityMatrix1D êê MatrixForm

Out[433]//MatrixForm=

i

k

jjjjjjjjjjjj

0.390029 0.0875988 -0.0128117 -0.100672
0.0875988 0.289999 0.124231 0.130117

-0.0128117 0.124231 0.186582 0.124142
-0.100672 0.130117 0.124142 0.133391

y

{

zzzzzzzzzzzz

In[434]:=

H*Eigensystem@DensityMatrix1DêêChop*L
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In[435]:=

BarChart3D@Re@DensityMatrix1D, XSpacing Ø 0.4,
YSpacing Ø 0.4, PlotRange Ø 880.5, 4.5<, 80.5, 4.5<, 8-0.35, 1.1<<,
Ticks -> 8881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<,

881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<, Automatic<, ViewPoint Ø 82, 0.8, 1.2<D
BarChart3D@Im@DensityMatrix1D, XSpacing Ø 0.4, YSpacing Ø 0.4,
PlotRange Ø 880.5, 4.5<, 80.5, 4.5<, 8-0.35, 1.1<<,
Ticks -> 8881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<,

881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<, Automatic<, ViewPoint Ø 82, 0.8, 1.2<D
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Out[435]=

Ü Graphics3D Ü
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Out[436]=

Ü Graphics3D Ü
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In[437]:=

H*Comparison of the Individual Probailities of the two-pair,
the three pair and the combined case.*L
N@MeasuredCountsD
N@MeasuredCounts1D
N@MeasuredCounts2 = MeasuredCounts + MeasuredCounts1D

Out[437]=

81.3348µ10-10, 1.27589µ 10-10, 3.32343µ 10-14, 2.61036µ 10-10,
1.30534µ 10-10, 1.30534µ10-10, 1.27589µ10-10, 1.58264µ 10-10,
2.85028µ 10-10, 8.25329µ10-13, 1.42927µ10-10, 1.42927µ 10-10,
3.32343µ 10-14, 2.85028µ10-10, 1.39453µ10-10, 1.45608µ 10-10,
1.42531µ 10-10, 1.42531µ10-10, 2.61036µ10-10, 8.25329µ 10-13, 1.45608µ 10-10,
1.16253µ 10-10, 1.3093µ 10-10, 1.3093 µ 10-10, 1.30534µ 10-10, 1.42927µ 10-10,
1.42531µ 10-10, 1.3093µ 10-10, 2.73197µ 10-10, 2.63664µ 10-13, 1.30534µ 10-10,
1.42927µ 10-10, 1.42531µ10-10, 1.3093µ 10-10, 2.63664µ 10-13, 2.73197µ 10-10<

Out[438]=

85.77514µ 10-11, 4.29153µ10-11, 6.34599µ10-11, 3.73657µ 10-11,
5.02997µ 10-11, 5.02997µ10-11, 2.76898µ10-11, 1.97826µ 10-11,
4.2135 µ10-11, 5.22917µ 10-12, 2.37328µ 10-11, 2.37328µ 10-11, 4.07672µ 10-11,
5.0525 µ10-11, 6.30406µ 10-11, 2.83034µ 10-11, 4.55871µ 10-11, 4.55871µ 10-11,
4.45395µ 10-11, 1.20101µ10-11, 4.21579µ10-11, 1.43907µ 10-11,
2.82968µ 10-11, 2.82968µ10-11, 4.25792µ10-11, 3.13377µ 10-11,
5.25793µ 10-11, 2.13629µ10-11, 5.35749µ10-11, 2.03049µ 10-11, 4.25792µ 10-11,
3.13377µ 10-11, 5.25793µ10-11, 2.13629µ10-11, 2.03049µ 10-11, 5.35749µ 10-11<

Out[439]=

81.91231µ 10-10, 1.70504µ10-10, 6.34931µ10-11, 2.98401µ 10-10,
1.80834µ 10-10, 1.80834µ10-10, 1.55279µ10-10, 1.78047µ 10-10,
3.27163µ 10-10, 6.0545µ 10-12, 1.66659µ 10-10, 1.66659µ 10-10, 4.08005µ 10-11,
3.35553µ 10-10, 2.02493µ10-10, 1.73912µ10-10, 1.88118µ 10-10,
1.88118µ 10-10, 3.05575µ10-10, 1.28355µ10-11, 1.87766µ 10-10,
1.30643µ 10-10, 1.59227µ10-10, 1.59227µ10-10, 1.73114µ 10-10, 1.74264µ 10-10,
1.9511 µ10-10, 1.52293µ 10-10, 3.26772µ 10-10, 2.05686µ 10-11, 1.73114µ 10-10,
1.74264µ 10-10, 1.9511µ 10-10, 1.52293µ 10-10, 2.05686µ 10-11, 3.26772µ 10-10<

In[440]:=

MaxLikError2@DM_D :=
Sum@Simplify@HPrediction@DM, MeasuredStates@@iDDD - MeasuredCounts2@@iDDL^2D,
8i, Length@MeasuredStatesD<D

BadnessPolynomial2 = MaxLikError2@GeneralDMD;
MinimizeOutput2 = NMinimize@BadnessPolynomial2, 8t1, t2, t3, t4, t5, t6,

t7, t8, t9, t10, t11, t12, t13, t14, t15, t16<, MaxIterations Ø 1000D;
UnnormalizedDensityMatrix2 = GeneralDM ê. MinimizeOutput2@@2DD;
DensityMatrix2 =
UnnormalizedDensityMatrix2ê Sum@UnnormalizedDensityMatrix2@@i, iDD, 8i, 4<D;
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In[445]:=

H*Comparison of Density Matrices for the "ideal" two
pair case and the combined case*LChop@DensityMatrixD êê MatrixForm

Chop@DensityMatrix1D êê MatrixForm
Chop@DensityMatrix2D êê MatrixForm

Out[445]//MatrixForm=

i

k

jjjjjjjjjjjjjjj

0.244056 -0.23861 + 3.16228µ 10-9 Â -0.23861 - 1.0873 µ 10-9 Â -0.26575

-0.23861 - 3.16228µ 10-9 Â 0.233286 0.233286 + 1.10301µ 10-9 Â 0.25982

-0.23861 + 1.0873 µ10-9 Â 0.233286 - 1.10301µ 10-9 Â 0.233286 0.25982
-0.26575 0.25982 0.25982 0.289373

Out[446]//MatrixForm=

i

k

jjjjjjjjjjjj

0.390029 0.0875988 -0.0128117 -0.100672
0.0875988 0.289999 0.124231 0.130117

-0.0128117 0.124231 0.186582 0.124142
-0.100672 0.130117 0.124142 0.133391

y

{

zzzzzzzzzzzz

Out[447]//MatrixForm=

i

k

jjjjjjjjjjjj

0.275133 -0.169162 -0.190539 -0.230606
-0.169162 0.24536 0.210068 0.232207
-0.190539 0.210068 0.223343 0.230935
-0.230606 0.232207 0.230935 0.256165

y

{

zzzzzzzzzzzz

In[448]:=
H* Plot of the combined case*L
BarChart3D@Re@DensityMatrix2D, XSpacing Ø 0.4,
YSpacing Ø 0.4, PlotRange Ø 880.5, 4.5<, 80.5, 4.5<, 8-0.35, 1.1<<,
Ticks -> 8881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<,

881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<, Automatic<, ViewPoint Ø 82, 0.8, 1.2<D
BarChart3D@Im@DensityMatrix2D, XSpacing Ø 0.4, YSpacing Ø 0.4,
PlotRange Ø 880.5, 4.5<, 80.5, 4.5<, 8-0.35, 1.1<<,
Ticks -> 8881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<,

881, "HH"<, 82, "HV"<, 83, "VH"<, 84, "VV"<<, Automatic<, ViewPoint Ø 82, 0.8, 1.2<D
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Out[448]=
Ü Graphics3D Ü
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Out[449]=
Ü Graphics3D Ü

In[450]:=
H*Gate with ideal beamsplitters*L

Output2x = 88-H1ê 3L* a * g<, 8Sqrt@H1ê 3LD a * d<, 8Sqrt@H1ê 3LD b * g<, 8 b * d<<;
ExpectDM2x = Output2x.Conjugate@Transpose@Output2xDD;
idealDM = N@ExpectDM2xê Tr@ExpectDM2xDD;
idealDM êê MatrixForm

Out[453]//MatrixForm=

i

k

jjjjjjjjjjjj

0.25 -0.25 -0.25 -0.25
-0.25 0.25 0.25 0.25
-0.25 0.25 0.25 0.25
-0.25 0.25 0.25 0.25

y

{

zzzzzzzzzzzz

In[454]:=

theo1 = DensityMatrix;
theo = DensityMatrix2;

In[456]:=

H*Fiedelity Ideal-Modell with ideal source*L
Fididealinput = Re@Chop@Tr@MatrixPower@

MatrixPower@theo1, 1ê 2D.idealDM.MatrixPower@theo1, 1 ê 2D, 1 ê 2DD^2DD;
H*Fiedelity Ideal-Modell*L
Fid = Re@Chop@

Tr@MatrixPower@MatrixPower@theo, 1 ê 2D.idealDM.MatrixPower@theo, 1 ê2D, 1 ê 2DD^2DD;
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In[458]:=

Print@"The fidelity of the theoretical prediction with an ideal source
for the realistic gate and loss with the ideal is ", Fididealinput, ".

The fidelity of the theoretical Prediction
of the entire realistic gate with the ideal is ", FidD

The fidelity of the theoretical prediction with
an ideal source for the realistic gate and loss with the ideal is

0.997948. The fidelity of the theoretical Prediction of the
entire realistic gate with the ideal is 0.881759

In[459]:=
H*Normalisation step before creating the output file
for the Tomography reconstruction*LPOVMHH = MeasuredCounts2@@1DD +

MeasuredCounts2@@2DD + MeasuredCounts2@@7DD + MeasuredCounts2@@8DD;
POVMHD = MeasuredCounts2@@3DD + MeasuredCounts2@@4DD +

MeasuredCounts2@@9DD + MeasuredCounts2@@10DD;
POVMHR = MeasuredCounts2@@5DD + MeasuredCounts2@@6DD +

MeasuredCounts2@@11DD + MeasuredCounts2@@12DD;
POVMDH = MeasuredCounts2@@13DD + MeasuredCounts2@@14DD +

MeasuredCounts2@@19DD + MeasuredCounts2@@20DD;
POVMDD = MeasuredCounts2@@15DD + MeasuredCounts2@@16DD +

MeasuredCounts2@@21DD + MeasuredCounts2@@22DD;
POVMDR = MeasuredCounts2@@17DD + MeasuredCounts2@@18DD +

MeasuredCounts2@@23DD + MeasuredCounts2@@24DD;
POVMRH = MeasuredCounts2@@25DD + MeasuredCounts2@@26DD +

MeasuredCounts2@@31DD + MeasuredCounts2@@32DD;
POVMRD = MeasuredCounts2@@27DD + MeasuredCounts2@@28DD +

MeasuredCounts2@@33DD + MeasuredCounts2@@34DD;
POVMRR = MeasuredCounts2@@29DD + MeasuredCounts2@@30DD +

+ ;
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MeasuredCounts2@@35DD + MeasuredCounts2@@36DD;

Normalise =

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

POVMHH
POVMHH
POVMHD
POVMHD
POVMHR
POVMHR
POVMHH
POVMHH
POVMHD
POVMHD
POVMHR
POVMHR
POVMDH
POVMDH
POVMDD
POVMDD
POVMDR
POVMDR
POVMDH
POVMDH
POVMDD
POVMDD
POVMDR
POVMDR
POVMRH
POVMRH
POVMRD
POVMRD
POVMRR
POVMRR
POVMRH
POVMRH
POVMRD
POVMRD
POVMRR
POVMRR

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

;

Done = Chop@N@MeasuredCounts2ê NormaliseDD;
In[460]:=

Export@FileOutName, DoneD;
In[461]:=

time2 = AbsoluteTime@D;
In[462]:=

duration = time2 - time1;
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In[463]:=

Print@"The total eveluation time for the notebook is ", durationD
The total eveluation time for the notebook is 136.348559

DDfg.nb 30
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