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By weakly measuring the polarization of a photon between two
strong polarization measurements, we experimentally investigate
the correlation between the appearance of anomalous values in
quantum weak measurements and the violation of realism and
nonintrusiveness of measurements. A quantitative formulation of
the latter concept is expressed in terms of a Leggett–Garg inequal-
ity for the outcomes of subsequent measurements of an individ-
ual quantum system. We experimentally violate the Leggett–Garg
inequality for several measurement strengths. Furthermore, we
experimentally demonstrate that there is a one-to-one correlation
between achieving strangeweak values and violating the Leggett–
Garg inequality.

entanglement ∣ quantum communication ∣ quantum nonlocality ∣
quantum measurement

There has been much debate in quantum physics over the ques-
tion of whether measurable quantities have definite values

prior to their measurement. Key ideas addressing this question
include the Bell inequality, which considers correlations between
measurements on components of a composite system that are
space-like separated (1, 2) and contextuality tests, which examine
whether identical experiments produce results in different “clas-
sically equivalent” contexts (3, 4). A conceptually elegant exten-
sion to these ideas is the Leggett–Garg inequality (LGI) (5),
which is an inequality constructed from the correlation functions
of a series of three consecutive measurements on a single system.
Leggett and Garg derive limits based on the joint assumptions of
(i) macroscopic realism: An observable for a system will have a
definite value at all times; and (ii) noninvasive measurement: It is
possible to determine this value with arbitrarily small disturbance
on the subsequent evolution of the system. The limits on the value
of the inequality derived from these assumptions differ from the
predictions of quantum mechanics. Thus the LGI tests the limits
of measurement and macroscopic realism.

Here we present an experimental test of a generalized LGI
using weak measurements (6–9) of the polarization of single
photons and measure violations by up to 14 standard deviations.
Additionally, we experimentally demonstrate a one-to-one rela-
tion (10, 11) between LGI violations and strange weak-valued
measurements (6–8), which also arise from the inability to assign
values to physical quantities between an earlier and a later mea-
surement.

Testing the LGI requires monitoring the system without
projecting it into a specific state. For a quantum system a quan-
tum nondemolition (QND) experiment (12–14) would be one
way to do this. But QND measurements are not the only way
to perform a noninvasive measurement. A generalization of the
QND measurement is the so-called weak measurement (6). A
weak measurement is one for which it is possible to adjust the
strength of the measurement and, in principle, to reduce the back
action on the system to an arbitrarily small amount. In other
words, a weak measurement is one for which the level of “inva-
sivness” can be controlled.

Shortly after Leggett and Garg introduced their inequality,
Aharanov et al. (7) suggested that observing the result of a weak
measurement conditioned on a specific result of a separate
projective measurement leads to unusual results. One unusual
property, dubbed strange weak values, is that the value assigned
in this way may lie outside the eigenspectrum of the observable
being measured (7). Because such strange weak values have been
observed (15–19), the idea that the measured value lies outside
the operator’s eigenspectrum raises questions about macroscopic
realistic descriptions of the system’s state and of the measure-
ment process (20, 21). In this sense, strange weak values explore
the same concepts (or raise the same problems) as the LGI. A
formal connection between a generalized LGI and weak values
has been recently proposed by Williams and Jordan (10, 11).
Specifically, they propose that the LGI is violated if and only
if the experiment yields a strange weak value.

We want to be clear about what we mean by the term macro-
scopic realism and how it applies to systems of an arbitrary size.
We use the same definition of macroscopic realism as Leggett
and Garg: A system is described by a probability distribution for
definite values of observables prior to measurement (5). The ori-
gin of the term macroscopic realism relates to the fact that one
expects an ensemble of very large systems to be described by a
classical distribution of definite values. However, this expectation
in no way constrains the description to this class of objects. The
term macroscopic realism, therefore, is not fundamentally about
the size of the investigated system (which can be any size, in
accordance with the generality of the Leggett–Garg treatment)
but rather about the assignment of definite values to measurable
quantities, either definitely (e.g., speed of a tennis ball) or pro-
babalistically (e.g., speeds of particles in an ideal gas). This has
been pointed out previously in a theoretical description connect-
ing Leggett–Garg inequalities for Rydberg atoms (22) to hidden
variables. The previous discussion holds true for the generaliza-
tion proposed in ref. 8, where the probability distribution is also
parametrized by a hidden-variable.

Recently, Jordan and coworkers (8, 10, 11) proposed a corre-
lation function that generalizes the original Leggett–Garg corre-
lation function to include nonprojective weak measurements.
With this generalization, the ability to test the LGI at differing
measurement strengths becomes possible, allowing for an experi-
mental investigation of the measurement process. The general-
ized Leggett–Garg correlation function (8, 10, 11) is

B ¼ hMaMbi þ hMbMci − hMaMci; [1]
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where fMa;Mb;Mcg is a set of three consecutive weak measure-
ments on the photon polarization. We use letters to denote the
sequence of measurements in order to distinguish the ordering of
the measurements from the physical quantities we measured, the
Stokes’ parameters, which are denoted with numerical subscripts
according to conventional notation. For a two-level system with
the properties of both macroscopic realism and noninvasive
detection, B must satisfy −3 ≤ B ≤ 1, which is the LGI. On
the other hand, quantum measurements produce values of B
satisfying (8): −3 ≤ B ≤ 1.5. Thus, there is a violation of the
LGI if 1 < B ≤ 1.5. Although the original formulation of the gen-
eralized LGI, Eq. 1, is in terms of three consecutive weak mea-
surements, the detailed analysis presented in refs. 8, 10, and 11
shows that, according to quantum mechanics, the violation of the
LGI does not depend on the measurement strength of either Ma
orMc. Thus, we can relax the requirement that all three measure-
ments are weak and perform strong projective measurements for
Ma or Mc thereby simplifying the experiment.

We feel it necessary to point out that the LGI as we have tested
it differs from sequential contextuality tests (23). Contextuality
tests using sequential measurements require the measured obser-
vables be compatible. The LGI has no such requirement; it
requires noninvasive measurement of incompatible observables.
Therefore some of the criticisms levelled at contextuality tests
(see, e.g., ref. 24 and references therein) do not apply to the LGI.
It may be that there is a deeper connection between contextuality
and noninvasive measurement, but we leave that for future work.

A conceptual scheme of the experimental setup is shown in
Fig. 1. We input a “signal” photon in the state jσini ¼ cos θ

2
jHiþ

sin θ
2
jV i where jHi and jV i represent horizontal and vertical

polarization states. We consider jσini as the state prepared by
the first measurement Ma; in this way, we can deterministically
assign the value 1 to Ma. The weak measurement, Mb, measures
the S1 Stokes’ parameter of the signal photon (14), correspond-
ing to the degree of polarization in the horizontal-vertical
basis. The final measurement, Mc, is the Stokes’ parameter
S2 of the signal photon that quantifies the degree of polariza-
tion in the diagonal-antidiagonal basis jDi ¼ 1

ffiffi

2
p ðjHi þ jV iÞ, jAi ¼

1
ffiffi

2
p ðjHi − jV iÞ. Thus, in our case we can rewrite Eq. 1 as (10, 11)

B ¼ hS1i þ hS1S2i − hS2i: [2]

Note that S1 is a weak measurement in the sense of Jordan et al.
(8), and S2 is a projective measurement.

The weak measurement is implemented using a nondetermi-
nistic linear optical controlled-sign gate (25–29). The polarization
of the signal qubit jσini in the gate’s control mode becomes
entangled with that of a second, “meter,” photon in the target
mode. A subsequent projective measurement of the meter pho-
ton realizes the weak measurement of the signal. The strength of
the measurement can be set by changing the meter input state
jμini ¼ γjDi þ γ̄jAi (with γ2 þ γ̄2 ¼ 1, and γ;γ̄ ∈ R without loss
of generality). The strength of the measurement is quantified
by the knowledge (14), K ¼ 2γ2 − 1. When K ¼ 1 (γ ¼ 1), full in-
formation is extracted about the polarization of the signal
photon, while when K ¼ 0 (γ ¼ 1∕

ffiffiffi

2
p

), the photon is left comple-
tely undisturbed and unmeasured. Between those two extremes,
the photon polarization undergoes partial disturbance, and one
can extract the average value of S1 as (14):

hS1i ¼
PðDÞ − PðAÞ

K
; [3]

where PðDÞ and PðAÞ are the probabilities of measuring the
values D and A, respectively, for the meter photon. The weak
character is reflected in the fact that an increasing number of
copies are necessary to estimate hS1i to a given precision as K
decreases. The weak value (6, 7) is calculated by postselecting
on a measurement ofMc that results in the value D for the signal
photon. In our implementation, we considered the weak value:

DhS1i ¼
PðDjDÞ − PðAjDÞ

K
; [4]

where PðAjDÞ is the probability of measuring the value A for the
meter photon, conditioned on the postselection of the signal
photon registering a value of D and similarly for PðDjDÞ. We
expect strange weak values (jDhS1ij > 1) to emerge when jσini
approaches the antidiagonal state jAi. We refer to weak values
as the postselected results of any weak measurement. Notice that
these coincide with the original formulation of Aharonov et al. in
the limit K → 0 (7). Even for finite strengths, strange weak values
may appear (13, 30). Fig. 2A shows the measured values for
the generalized LG correlation function, B, defined in Eq. 2 and
the weak values, WV , for the choice K ¼ 0.5445� 0.0083 as θ is
varied in the range ½0;2π�. The maximum value we observe is
Bmax ¼ 1.312� 0.022, which is 14 standard deviations above
the classical limit of B ¼ 1. The results show that there is a clear
correlation between the violation of the LGI and the appearance
of strange positive weak values. There are discrepancies between
the theoretical curves and the data points for values of θ where
we do not expect to see a violation of the LGI. We discuss these
in more detail in Materials and Methods. We also see strange
negative weak values corresponding to values of B that do not
violate the LGI of Eq. 2. This does not contradict the prediction
of Williams and Jordan (10, 11) because they predict that there
are strange weak values when a generalized LGI is violated.
There are four distinct generalized LGIs corresponding to differ-
ent assignments of the �1 eigenvalues for the operators in Eq. 2.
It is also possible to define four different weak values, by eigen-
value reassignment and varying the final postselection state of the
signal. See Materials and Methods for more details.

The condition—which applies across the whole parameter
range—is that whenever a strange weak value is obtained one
of these four LGIs will also be violated. As shown in Fig. 2B,
if we assign our eigenvalues such that Mb ¼ −S1 rather than
Mb ¼ S1 as in Fig. 2A, a violation of the LGI, B > 1, corresponds
to the strange weak values, in the range where previously there
was no violation.

To understand the effect of the measurement strength on
violation of the LGI, we decreased the knowledge to K ¼
0.1598� 0.0091, Fig. 3. This corresponds to a weaker measure-

Fig. 1. Conceptual representation of the experiment. A “signal” photon is
prepared with an arbitrary linearly polarized state using a half waveplate
(λ∕2), Ma. A weak measurement of the polarization is then made (Mb) by
interacting the signal photon with a “meter” photon via a C-Sign gate, which
operates via ameasurement-induced nonlinearity (14, 25–29). Conditional on
detecting a single photon in each of the two output modes (a coincidence
measurement) the gate ideally performs the operation jHihHj⨂ σIþ
jVihV j⨂ σZ on the two-qubit polarization Hilbert space Hsignal ⨂Hmeter,
where σI (σZ) is the 1-qubit identity (Pauli Z) operator and jHi ¼ j0i,
jVi ¼ j1i. See the main text for a full description of Ma, Mb, and Mc and
Materials and Methods for more experimental details.

2 of 6 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1005774108 Goggin et al.



ment of the signal photon polarization. We now observe a max-
imum value Bmax ¼ 1.436� 0.053 (eight standard deviations),
confirming that the peak violation of the LGI increases as the
measurement strength decreases (8). Finally note that the range
of θ values for which a violation of the LGI occurs becomes larger
as the measurement becomes weaker. But even with moderate
knowledge (K ¼ 0.1598� 0.0091) we can violate the LGI for
nearly every state (see Fig. 4). Physically, the dependence of
the LGI violation on measurement strength can be understood
as follows. A full strength measurement prepares the photon
in an eigenstate of the measured observable regardless the initial
preparation—this prevents the observation of any correlations
between Ma and Mc. As the measurement gets weaker, the
disturbance to the correlations decreases, allowing observation
of an LGI violation (31).

Determination of the LGI parameter can be regarded as a
more robust approach than strange weak values for investigating
the effects of varying the intermediate measurement strength.
This is because it involves all the measured photons, while the
measurement of strange weak values only uses a subset of the
measured photons (those that satisfy the postselection criterion).
That is, regardless of their utility in precision measurements
(18, 19), anomalous weak values are always open to the criticism
of not measuring the complete system. The same criticism cannot
be levelled against violating the Leggett–Grag inequalities. The
connection between the LGI and strange weak values nicely illus-
trates that weak values provide information about the physics of
the system and are more than a “mere parlor trick.”

It is tempting to conclude that the strange weak values and
LGI violation arise because it is not possible to consider the signal
photon as a separate system—instead, we must consider the
joint signal/meter system. However, as the measurement strength

decreases, the less interaction the meter has with the signal and
the more the signal photon can be considered a separate system.
Yet we observe that as the measurement strength gets weaker, the
LGI violation becomes larger. In fact, maximal violation of the
LGI occurs in the limit of a separable signal and meter state.
In practice, this is unmeasurable because K ¼ 0, and we would
be unable to measure S1.

Our results suggest that macroscopic realism is intimately re-
lated to measurement. As our measurement becomes weaker—
i.e., less invasive—the LGI becomes more violated not less. Thus,

A

B

Fig. 2. Variation of the weak value, WV (▾), and the Leggett–Garg para-
meter B (•) for a range of input states jσini parametrized by θ. Postselection
is on the diagonal state jDi, and the measurement strength is K ¼ 0.5445�
0.0083. Error bars show the standard deviation and arise from poissonian
counting statistics. (A) B parameter using Mb ¼ S1. (B) B parameter
Mb ¼ −S1. Solid lines are the theoretical predictions from Eqs. 4 and 2.
The horizontal lines at �1 indicate the limits of the eigenspectrum of S1.
Bmax ¼ 1.312� 0.022.

A

B

Fig. 3. As for Fig. 2, except now K ¼ 0.1598� 0.0091. Error bars are larger
than in Fig. 2 because of poorer statistics due to reduced postselection
probability. (A) B parameter formed with Mb ¼ S1. (B) B parameter from
Mb ¼ −S1. Solid lines are the theoretical predictions from Eqs. 4 and 2.
Bmax ¼ 1.436� 0.053.

Fig. 4. Comparison of the Leggett–Garg parameter (B) for a range of input
states jσini, for the measurement strengths of Fig. 2, K ¼ 0.5445� 0.0083 (•),
and Fig. 3 K ¼ 0.1598� 0.0091 (▴). As before, error bars show the standard
deviation and arise from poissonian counting statistics. The range of violation
of the LGI is larger when the measurement is less intrusive. The red dashed
line is the theoretical result for a zero strength measurement, where the LGI
would be violated for all states between jHi and jVi. Note that even with a
moderate strength of K ¼ 0.1598� 0.0091, we cover most of this range.
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macroscopic realism becomes the only condition left to violate.
Yet there is little difference between our result with a finite
knowledge (K ¼ 0.1598� 0.0091) and the theoretical limit of
zero knowledge. In fact, we see a significant violation with a
knowledge of 0.5445. So with a better than 50∕50 shot of knowing
S1, we get a violation of the LGI.

Bounded weak values also require noninvasive measurement
to be observed. (10). Yet the weak values become less bounded
as the measurement gets weaker. This leaves open questions
about weak values as markers for a violation of local realism.

More significantly, both the LGI violation and strange weak
values disappear when the measurement is strong enough. Pre-
sumably the system did not become macroscopically real as
the measurement became stronger; the measurement forced a
definite value on the system. These results put into the spotlight
questions that are as old as quantum theory. Is measurement the
only necessary condition for reality? Is macroscopic realism a
superfluous condition? To answer this last question we need to
devise an experimentally meaningful test of macroscopic realism
that is independent of conditions on measurement strength.

Materials and Methods
Generalized Leggett-Garg Inequalities and Corresponding Weak Value Measure-
ments. Here we give more details on the different LGIs and weak value ex-
pressions that can be defined in our experiment. The two measurement
operators in Eq. 2 of the main text have eigenvalues of �1, corresponding
to two possible outcomes. Experimentally, two detectors are required for
each measurement: one at the transmission output port of a polarizing
beamsplitter and the other at the reflection output port. We must choose
how to assign clicks at each detector to the eigenvalues. There are two
choices for each measurement, yielding four possible configurations in total
and subsequently four distinct LGIs:

B1 ¼ þhS1i þ hS1S2i − hS2i; [5]

B2 ¼ −hS1i − hS1S2i − hS2i; [6]

B3 ¼ þhS1i − hS1S2i þ hS2i; [7]

B4 ¼ −hS1i þ hS1S2i þ hS2i: [8]

A violation of the assumptions of Leggett and Garg occurs if any of the
above expressions exceeds 1. This is shown in (10). Briefly, if we write Mq,
with q ¼ a;b;c as

Mq ¼ Sj þ ϵj; q ¼ a;b;c and j ¼ 1;2

where ϵ is “noise” from the experiment. The assumptions of macroscopic rea-
lism and noninvasive measurement imply

hϵji ¼ 0

and

hSjϵki ¼ 0;j;k ¼ 1;2.

Therefore

− 1 ≤ hMqMq0 i ≤ 1;

giving the limits of hBi.
We can also define four weak values for the signal photon, given the two

choices of eigenvalue assignment and two choices of the postselected signal
state:

WV 1 ¼ DhS1i ¼
PðDjDÞ − PðAjDÞ

K
; [9]

WV 2 ¼ Dh−S1i ¼
PðAjDÞ − PðDjDÞ

K
; [10]

WV 3 ¼ AhS1i ¼
PðDjAÞ − PðAjAÞ

K
; [11]

WV 4 ¼ Ah−S1i ¼
PðAjAÞ − PðDjAÞ

K
; [12]

where PðAjDÞ is the probability of measuring the value A for the meter
photon, conditioned on the postselection of the signal photon in state D
and similarly for PðDjDÞ. Thus we have a weak value for each LG inequality.
The condition that holds for all input signal states (parameterized by θ) is that
whenever a weak value is observed one of the LGIs is violated and vice versa.
Showing all eight of the above relations would produce plots that would be
very difficult to read. The interested reader can see the missing relations by
imagining Figs. 2 and 3 horizontally reflected about a line through 180°. We
also note that these LGIs and weak values would produce the mirror image
(horizontally again) of Fig. 4 of the main text with the horizontal range chan-
ged from [180°, 360°] to [0°, 180°]. Finally we note that future experiments
and investigation could consider more general measurements with more
than two outcomes.

Experimental Details. Here we give a simple description of our apparatus,
illustrated in Fig. 7. Single photons are produced in pairs by spontaneous
parametric down conversion (SPDC) in a bismuth borate (BiBO) nonlinear
crystal. The pump beam is obtained by frequency doubling a 100-fs pulsed
Ti∶Sa laser lasing at 820 nm, with a repetition rate 82 MHz and bandwidth
8nm. We used a pump power of approximately 50 mW in order to reduce
double pair emission to a negligible level. Single modes are selected by
narrowband interference filters (IF) and fiber launchers (FL), coupling them
to single mode fibers. The rate of pair production is approximately 50 s−1 at
the output of the gate.

Their original H polarization state is recovered by means of polarization
controllers in the optical fibers between the SPDC source and the free-space
output couplers and then prepared by means of a glan-taylor polarizing
beamsplitter (PBS) and half-wave plate (λ∕2). This state preparation coincides
with the first measurement Ma, which therefore assumes the value þ1

deterministically.
The photons then arrive on our C-Sign gate. This is based on a single par-

tially polarizing beam splitter (PPBS), whose transmittivities for the horizon-
tal, H, and vertical, V , polarizations are ideally ηH ¼ 1 and ηV ¼ 1∕

ffiffiffi

3
p

(25–27).
Due to quantum interference, the event jHisjHim acquires a π phase shift,
while the others are left unaltered—here s and m label the signal and the
meter. Polarization-dependent loss induced by the gate can be either com-
pensated directly in the state preparation (as we did for the meter arm) or by

0 50 100 150 200 250 300 350
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−0.5

0

0.5

1

0 50 100 150 200 250 300 350
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0

0.5

1

0 50 100 150 200 250 300 350
−1

−0.5

0

0.5

1

Fig. 5. The three correlation functions that comprise the generalized
Leggett–Garg correlation function for a range of input states jσini parame-
trized by θ. The measurement strength is K ¼ 0.5445� 0.0083. Error bars
show the standard deviation and arise from poissonian counting statistics.
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adding extra loss (the second PPBS in the signal arm). The gate is nondeter-
ministic, but its correct functioning is heralded by a coincidence count
between two distinct output arms.

The basic principle for the nondestructive measurement Mb derives from
the action of the gate in the rotated basis jDi ¼ ðjHi þ jViÞ∕ ffiffiffi

2
p

and jAi ¼
ðjHi − jViÞ∕ ffiffiffi

2
p

. If jVisjDim are injected, they emerge in the same state at
the output. Conversely, when jHisjDim is injected, there occurs the phase shift
flipping the polarization of the meter from jDim to jAim. Therefore, one can
assess the polarization of the signal by a measurement on the meter arm
distinguishing between the two rotated polarizations: A measurement of
jDim flags the state jHis, the same for the orthogonal complement. This is
easily obtained by means of a half-wave plate and a glan-taylor polarizing
beam splitter (PBS). Notice that the injection of jHim in the meter leads no
information about the state of the signal, because this remains unaffected in
any case.

An intermediate situation occurs if the polarization jμim ¼ γjDim þ γ̄jAim
is used. This is unaltered upon injection of jVi and rotated to jμ̄i ¼ γ̄jDimþ
γjAim in the other case. Nevertheless ‖hμ̄jμi‖ < 1, in the general case, and
the two events can not be perfectly distinguished. We notice that a measure
in the fjDim;jAimg basis is the optimal discrimination strategy (32). Conse-
quently, only partial information can be retrieved about the state of the sig-
nal. The measurement is then nondestructive and its strength can be tuned at
will by properly setting the polarization jμim. Because the signal photon is
not destroyed, it can be subsequently measured in the standard way by
means of a half-wave plate and PBS, so to perform the final step Mc . We
note that themeasurement results are independent of the detection efficien-

cies. The operation of the gate is such that we make all three measurements
on the same system when we have a coincidence event.

Error Analysis. Here we examine the systematic error in the experiment. As
was noted in the main text there are values of θ for which the experimental
results diverge from the theoretical results by more than the standard devia-
tion. This error is due to imperfect mode-matching at the PPBS. We checked
the outcomes of the measurement results for each of the measurements in-
dependently, as shown in Figs. 5 and 6. We can compare the measured results
with the expected results for that measurement, which is known theoreti-
cally, which helps us to identify that the error is in S1 but only for certain
values of θ. This is consistent with our experimental observations that suggest
that mode matching is the biggest error factor in the experiment. The mode
matching is input-dependent because of a steering effect from rotating the
input waveplate. In this case, the mode matching is optimized for the regime
of interest, 180 ≤ θ ≤ 360° as demonstrated by the fact that the S1 measure-
ment gives the correct result, to within statistical error, in that range. There-
fore, we claim violation for the LGIs involving B1 and B2, while systematic
error might play a role for B3 and B4. We also note that hS1S2i ¼ 0 over
the range 180 ≤ θ ≤ 360° indicating that Mb is indeed a quantum nondemo-
lition measurement over this range.
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