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The resources required to characterize the dynamics of engineered quantum systems—such as quantum

computers and quantum sensors—grow exponentially with system size. Here we adapt techniques from

compressive sensing to exponentially reduce the experimental configurations required for quantum

process tomography. Our method is applicable to processes that are nearly sparse in a certain basis and

can be implemented using only single-body preparations and measurements. We perform efficient, high-

fidelity estimation of process matrices of a photonic two-qubit logic gate. The database is obtained under

various decoherence strengths. Our technique is both accurate and noise robust, thus removing a key

roadblock to the development and scaling of quantum technologies.
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Understanding and controlling the world at the
nanoscale—be it in biological, chemical or physical
phenomena—requires quantum mechanics. It is therefore
essential to characterize and monitor realistic complex
quantum systems that inevitably interact with typically
uncontrollable environments. One of the most general
descriptions of the dynamics of an open quantum system
is a quantum map—typically represented by a process
matrix [1]. Methods to identify this matrix are collectively
known as quantum process tomography (QPT) [1,2]. For a
d-dimensional quantum system, they requireOðd4Þ experi-
mental configurations: combinations of input states, on
which the process acts, and a set of output observables.
For a system of n qubits—two level quantum systems—
d ¼ 2n. The required physical resources hence scale
exponentially with system size. Recently, a number of
alternative methods have been developed for efficient and
selective estimation of quantum processes [3]. However,
full characterization of quantum dynamics of comparably
small systems, such as an 8-qubit ion trap [4], would still
require over a billion experimental configurations, clearly
impractical. So far, process tomography has therefore
been limited by experimental and off-line computational
resources, to systems of 2 and 3 qubits [5–7].

Here we adapt techniques from compressive sensing
to develop an experimentally efficient method for QPT. It
requires onlyOðs logdÞ configurations if the process matrix
is s compressible in some known basis, i.e., it is nearly
sparse in that it can be well approximated by an s-sparse
process matrix. This is usually the case, because engi-
neered quantum systems aim to implement a unitary
process which is maximally sparse in its eigenbasis.
In practice, as observed in liquid-state NMR [8], photonics
[5,9,10], ion traps [11], and superconducting circuits [6],

a near-unitary process will still be nearly sparse in this
basis, and still compressible. The near sparsity is due to
few dominant system environment interactions. This is
more apparent for weakly decohering systems [12].
We experimentally demonstrate our algorithm by esti-

mating the 240 real parameters of the process matrix of a
canonical photonic two-qubit gate, Fig. 1, from a reduced
number of configurations. From just 18 and 32 configura-
tions, we obtain fidelities of 94% and 97% with process
matrices obtained from an overcomplete set of all 576
available configurations.
Compressive sensing provides methods for compression

of information carried by a large-size signal into a signifi-
cantly smaller one along with efficient convex opti-
mization algorithms to decipher this information [13].
Originally developed to exploit compressible features of

FIG. 1 (color online). Experimental scheme. Two-photon in-
puts were prepared with either (a) a high-rate, nonscalable, two-
photon source or (b) a low-rate, scalable, four-photon source.
The qubits are encoded using polarization, as described in the
text. The quantum process is a photonic entangling gate. A
measurement configuration is defined as some combination of
state preparation and an observable, implemented here with
quarter- and half-wave plates (QWP, HWP), polarizers (PBS),
and photon detectors (APD). For details see [19].
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audio and video signals, compressive sensing is now ap-
plied to: simulations of compressive sensing for QPT [14],
ghost imaging [15], and state tomography for low-rank
density matrices [16]. The latter provides a quadratic re-
duction of physical resources from d2 for standard tomog-
raphy to Oðrdlog2dÞ for a density matrix of rank r with the
added advantage that rank is basis independent. Recently,
this method has been useful in efficient state tomography
of one-dimensional systems approximated by matrix prod-
uct states [17].

Under reasonable assumptions, a quantum map on a
d-dimensional space has the general representation [1],

S ð�Þ ¼ Xd2

�;�¼1

�������
y
� (1)

where �, the d2 � d2 process matrix, is positive semi-

definite, � � 0, and trace preserving,
P

�;�����
y
��� ¼

Id, with f��g an orthonormal matrix basis set, Trð�y
���Þ ¼

���. Note that sparsity is a property of the map represen-

tation not the map itself. Data is collected by preparing
an ensemble of identical systems in one of the states
f�1; . . . ; �kg, inputting them to the process �, and then
measuring an observable M from the set fM1; . . . ;M‘g.
For a pair (�, M), the outcome will be yM;� ¼
TrðSð�ÞMÞ. If the experiment is repeated for all configu-
rations, i.e., (�i, Mi), i ¼ 1; . . . ; m ¼ k‘, the relation be-
tween the vector of outcomes y ¼ ½yM1;�1

; . . . ; yMm;�m
�T

and the true process matrix, denoted by �0, can be repre-
sented by a linear map y ¼ � ~�0, where ~�0 is the vector-
ized form of the process matrix �0 and � is an m� d4

matrix of coefficients of the form Trð���i�
y
�MiÞ=

ffiffiffiffi
m

p
.

In general, estimating a sparse process matrix with an
unknown sparsity pattern from an underdetermined set
of linear equations (m< d4) would seem highly unlikely.
Compressive sensing, however, tells us that this can be done
by solving for � from the convex optimization problem:

minimize k ~�k‘1 subject to ky�� ~�k‘2 � "; (2)

and positive-semidefinite and trace-preserving conditions
as defined above. The parameter " quantifies the level
of uncertainty in the measurements, that is, we observe
y ¼ ��0 þ w with kwk‘2 � ". From [18], recovery via

(2) is ensured if (i) the matrix � satisfies the restricted
isometry property:

1� �s �
k� ~�1ðsÞ �� ~�2ðsÞk2‘2
k ~�1ðsÞ � ~�2ðsÞk2‘2

� 1þ �s (3)

for all s-sparse �1ðsÞ, �2ðsÞ process matrices; (ii) the

isometry constant �2s <
ffiffiffi
2

p � 1 and (iii) the number of
configurationsm � C0s logðd4=sÞ. Under these conditions,
the solution �? of (2) satisfies,

k ~�? � ~�0k‘2 �
C1ffiffiffi
s

p k ~�0ðsÞ � ~�0k‘1 þ C2" (4)

where �0ðsÞ is the best s-sparse approximation of �0 and
C0, C1, C2 are constants on the order of Oð�sÞ, see [19].
The restricted isometry property states that two s-sparse
process matrices �1ðsÞ and �2ðsÞ can be distinguished if
their relative distance is nearly preserved after the measure-
ments. If the measurements are noise free, " ¼ 0, and �0

is s sparse, �0 ¼ �0ðsÞ, then the right-hand side of (4)
is zero leading to perfect recovery, �? ¼ �0. Otherwise
the solution tends to the best s-sparse approximation of
the process matrix plus the additional term due to measure-
ment error ". If for an n-qubit QPT with d ¼ 2n the con-
ditions of the above analysis are satisfied, then the number
of experimental configurations m scales linearly with sn,
specifically, m � C0sð4n log2� logsÞ ¼ OðsnÞ. In [19],
using the measure concentration properties of random ma-
trices, following the arguments in [20], we show that if� is
constructed from random input states f�ig, and random
observables fMig, then the restricted isometry in (3) holds
with high probability. Also a test is presented to certify
the sparsity assumption.
A nearly sparse process matrix can be recovered from an

exponentially smaller number of measurement outcomes
to within the bounds of (4) by solving (2). We now test our
algorithm experimentally against standard QPT on a two-
qubit gate under a range of decoherence—and thus spar-
sity—conditions. We used a photonic controlled-phase,
CZ, gate, Fig. 1 where the qubits are encoded in orthogonal

polarization states of single photons (jHi, horizontal,
and jVi, vertical). We performed full process tomography
[5,9,10] of the gate with both two-photon and four-photon
arrangements, preparing 16 pairwise combinations of
the 4 input states fjHi; jVi; jDi; jRig and, for each input,
measuring 36 two-qubit combinations of the observables

fjHi; jVi; jDi; jAi; jRi; jLig, where jDðAÞ> ¼ ðjH >

�jV>Þ= ffiffiffi
2

p
and jRðLÞ> ¼ ðjH >�ijV>Þ= ffiffiffi

2
p

. These
576 input-output configurations represent an overcomplete
set which allows the best possible estimate of the quantum
process, denoted �576 [5].
The compressed quantum process tomography (CQPT)

estimate of the 16� 16 process matrix, �m, is obtained by
solving (2) with y ¼ Cselp and � ¼ CselG where p is the
vector of 576 experimental probabilities corresponding to
each of the 576 configurations, G is the 576� 256 matrix
obtained from all the configurations with the basis set f��g,
and Csel is the m� 576 matrix corresponding to taking a
selection of m � 576 of all possible configurations. The
basis set is obtained from the singular-value decomposition
of the ideal CZ gate: the process matrix in this basis is
maximally sparse with a single nonzero (1, 1) element. The
measurement error bound " in (2) is chosen to be just
slightly larger than

ffiffiffiffi
m

p
�, where� is the minimum feasible

root-mean-square level obtained from (2) using all con-
figurations, i.e., with Csel ¼ I576. We quantify decoherence
using the process purity, P ¼ Trð�2

m=d
2Þ, which varies

from 0 for a completely decohering channel, to 1
for a unitary process: in our experiment we used six
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decoherence levels (see [19] for details), giving purities
of f0:62; 0:74; 0:77; 0:79; 0:86; 0:91g � 0:01.

Figure 2 shows, for the lowest decoherence level,
the process fidelities [5] versus the number of randomly
selected configurations, m. Each process matrix, f�mg,
is obtained by solving (2). We use the fidelity bet-
ween (i) the compressive measurement and the ideal,
F ðUcz; �mÞ; and (ii) the compressed and optimal measure-
ments, F ð�576; �mÞ. Note that as m increases the fidelity
with the ideal converges to the value of 0.89 obtained
from �576; likewise, the fidelity with the full estimate
converges to unity. Similar plots exist for every level of
decoherence, with fidelities reduced accordingly.

We have so far used random selections of probabilities
from the full data set, which allows us a comprehensive
test of CQPT. Experiments, however, do not yield

probabilities but physical quantities, e.g., count rates. To
date, algorithms for more efficient state [16] or process
tomography have assumed probabilities as a starting point.
Since normalization is an issue to some extent in all
physical architectures, it will be necessary to investigate
the robustness and scalability of algorithms for real-world
experiments.
For our photonic two-qubit gate, which is lossy and

intrinsically probabilistic, the probabilities were obtained
by normalizing counts using a full basis set of observables
extracted from all measurements, I576. Having sufficient
configurations to allow for normalization necessarily im-
poses limits on CQPT efficiency: for low m, we are re-
stricted in how random our selections can be. (Details and
some permissible configurations in [19]). As an example,
Fig. 3 shows process matrices reconstructed via CQPT
from just one of these configurations compared to the
respective full data estimates. We used 32 combinations
of the 16 inputs fjHi; jVi; jDi; jRig�2 and 2 observables
fjRijIi; jIijRig, where I is the identity. The agreement is
excellent as one can see from the fidelities and the correct
reproduction of imaginary elements—which are ideally
zero. Another striking feature is that we obtain highly
faithful reconstructions of a nonlocal process using only
local measurements [2].
A further crucial test is whether CQPT enables us to

locate errors and implement necessary corrections: a com-
mon example is identifying local rotations that move the
process closer to the ideal. By optimizing F ðUcz; �32Þ,
we calculated local corrections to �32; applying them to
the full estimate �576, F ðUcz; �576Þ improved, on average,
over all decoherence levels, by 4.1%. This is very close to
the average 4.9% improvement obtained by calculating
and applying local corrections directly to �576. Even a
low-configuration CQPT estimate of a noisy process there-
fore enables improvements.
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FIG. 2 (color online). Process fidelities vs number of input-
output configurations, for each compressive QPT estimate, �m,
in the gate basis of the ideal CZ gate for the lowest measured
noise level, P ¼ 0:91. The dashed line shows the fidelity of the
full estimate F ðUcz; �576Þ ¼ 0:89 (black diamond). Error bars
are obtained by solving (2) for 50 different random combinations
of m inputs and observables.

FIG. 3 (color online). Real and imaginary process matrix elements in the Pauli basis for the CQPT estimate �32, 32 configurations
(left) vs full data estimate �576, 576 configurations (right) for (a) a low noise, two-photon experiment, P ¼ 0:91, and (b) a high-noise,
four-photon experiment, P ¼ 0:62. The CQPT reconstructions have fidelities, F ð�576; �32Þ, of 95% and 85%, respectively. The CQPT
estimation accuracy is excellent for low noise, and reliable even for high noise, see [19] for more details.
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That high-fidelity estimates are obtained byCQPT can be
understood from the error bound (4) which shows that the
CQPT estimate tends towards the best s-sparse approxima-
tion of the true process, �576. Figure 4 shows the process
matrix elements, sorted by relative magnitude, for low- and
high-noise levels, in two basis sets. The s-sparse approxi-
mation levels indicated in (4) are reached where the matrix
elements drop below the error threshold (0.01–0.02). For the
corresponding m, we can therefore expect a successful,
high-fidelity, CQPT reconstruction. In the CZ basis, the
plots show that for low noise, s 2 ½20; 30�, which correlates
well with the fidelities in Fig. 2; for high noise s 2 ½40; 60�.
Although the process matrix is still somewhat sparse in the
Pauli basis (Fig. 3). Figure 4(b) indicates that �100 con-
figurations are needed to obtain an estimate of comparable
quality. Furthermore, the sorted magnitude values in the CZ

basis decay exponentially, which is sufficient to declare
the process matrix s compressible, see, e.g., [21,22]. In-
triguingly, this exponential decay is a signature of model-
based compressive sensing where the scaling goes from
m ¼ Oðs logðd=sÞÞ tom ¼ OðsÞ [22]. This demands further
investigation, since it appears that QPT fits this framework,
particularly when the process matrix is expanded in the
ideal basis corresponding to the unitary design goal.

Our experimental results are supported numerically
by simulations of a 2-qubit process as well as simulation
studies for 3- and 4-qubit systems which show the same
type of compressibility, see [19]. Applying CQPT to larger
systems will require careful attention to classical postpro-
cessing which—as in QPT—scales exponentially. The
standard software we used here (see [19]), can easily
handle 2- and 3-qubit CQPT systems. For larger systems,
more specialized software can increase speed by orders of
magnitude, see, e.g., [21].

A number of research directions arise from this work:
incorporating knowledge of model structure properties;
tightening the bounds on scaling laws; understanding

how near-sparsity s and rank r vary with system dimen-
sion, d; pursuing highly efficient convex-computational
algorithms; and selection of optimal configurations.
Compressive tomography techniques can also be applied
to quantum metrology and Hamiltonian parameter estima-
tion: for example, estimating selective properties of
biological or chemical interest in molecular systems and
nanostructures with typically sparse Hamiltonians [23].
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FIG. 4 (color online). Absolute values of the 256 process
matrix elements of �576 for our lowest and highest noise level,
sorted by relative magnitude [with respect to the (1, 1) element]
in the CZ basis (top) and the Pauli basis (bottom). The error
threshold, which indicates the required number of configura-
tions, is shown in grey.
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