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Simplifying quantum logic using
higher-dimensional Hilbert spaces
Benjamin P. Lanyon1*, Marco Barbieri1, Marcelo P. Almeida1, Thomas Jennewein1,2, Timothy C. Ralph1,
Kevin J. Resch1,3, Geoff J. Pryde1,4, Jeremy L. O’Brien1,5, Alexei Gilchrist1,6 and Andrew G.White1

Quantum computation promises to solve fundamental, yet otherwise intractable, problems across a range of active fields of
research. Recently, universal quantum logic-gate sets—the elemental building blocks for a quantum computer—have been
demonstrated in several physical architectures. A serious obstacle to a full-scale implementation is the large number of
these gates required to build even small quantum circuits. Here, we present and demonstrate a general technique that
harnesses multi-level information carriers to significantly reduce this number, enabling the construction of key quantum
circuits with existing technology. We present implementations of two key quantum circuits: the three-qubit Toffoli gate and
the general two-qubit controlled-unitary gate. Although our experiment is carried out in a photonic architecture, the technique
is independent of the particular physical encoding of quantum information, and has the potential for wider application.

The realization of a full-scale quantum computer presents one
of the most challenging problems facing modern science.
Even implementing small-scale quantum algorithms requires

a high level of control over multiple quantum systems. Recently,
much progress has been made with demonstrations of universal
quantum gate sets in a number of physical architectures including
ion traps1,2, linear optics3–6, superconductors7,8 and atoms9,10. In
theory, these gates can now be put together to implement any
quantum circuit and build a scalable quantum computer. In
practice, there are many significant obstacles that will require both
theoretical and technological developments to overcome. One is
the sheer number of elemental gates required to build quantum
logic circuits.

Most approaches to quantum computing use qubits—the
quantum version of bits. A qubit is a two-level quantum system that
can be representedmathematically by a vector in a two-dimensional
Hilbert space. Realizing qubits typically requires enforcing a two-
level structure on systems that are naturally far more complex
and which have many readily accessible degrees of freedom,
such as atoms, ions or photons. Here, we show how harnessing
these extra levels during computation significantly reduces the
number of elemental gates required to build key quantum circuits.
Because the technique is independent of the physical encoding
of quantum information and the way in which the elemental
gates are themselves constructed, it has the potential to be used
in conjunction with existing gate technology in a wide variety of
architectures. Our technique extends a recent proposal11, and we
use it to demonstrate two key quantum logic circuits: the Toffoli
and controlled-unitary12 gates. We first outline the technique in
a general context, then present an experimental realization in a
linear optic architecture: without our resource-saving technique,
linear optic implementations of these gates are infeasible with
current technology.

1Department of Physics and Centre for Quantum Computer Technology, University of Queensland, Brisbane 4072, Australia, 2Institute for Quantum Optics
and Quantum Information, Austrian Academy of Sciences, Boltzmanng. 3, A-1090 Vienna, Austria, 3Institute for Quantum Computing and Department of
Physics & Astronomy, University of Waterloo, N2L 3G1, Canada, 4Centre for Quantum Dynamics, Griffith University, Brisbane 4111, Australia, 5Centre for
Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers
Building, Woodland Road, Bristol BS8 1UB, UK, 6Physics Department, Macquarie University, Sydney 2109, Australia. *e-mail: lanyon@physics.uq.edu.au.

Simplifying the Toffoli gate
One of the most important quantum logic gates is the Toffoli12—
a three-qubit entangling gate that flips the logical state of the
‘target’ qubit conditional on the logical state of the two ‘control’
qubits. Famously, these gates enable universal reversible classical
computation, and have a central role in quantum error correction13

and fault tolerance14. Furthermore, the combination of the Toffoli
and the one-qubit Hadamard offers a simple universal quantum
gate set15. The simplest known decomposition of a Toffoli when
restricted to operating on qubits throughout the calculation is a
circuit that requires five two-qubit gates12. If we further restrict
ourselves to controlled-z (or cnot) gates, this number climbs to
six12 (Fig. 1a). A decomposition that requires only three two-qubit
gates11 is shown in Fig. 1b. The increased efficiency is achieved by
harnessing a third level of the target information carrier—the target
is actually a qutrit with logical states |0〉, |1〉 and |2〉.

At the input and output of the circuit, information is encoded
only in the bottom two (qubit) levels of the target. The action of the
first Xa gate is to move information from the logical |0〉 state of the
target into the third level (|2〉), which then bypasses the subsequent
two-qubit gates. The final Xa gate then coherently brings this
information back into the |0〉 state, reconstructing the logical qubit.
By temporarily storing part of the information in this third level,
we are effectively removing it from the calculation—enabling the
subsequent two-qubit gates to operate on a subspace of the target.
This enables an implementation of the Toffoli with a significantly
reduced number of gates. Note that only standard two-qubit gates
are necessary, with the extra requirement that they act only trivially
on (that is, apply the identity to) level |2〉 of the qutrit. As such, it is
not necessary to develop a universal set of gates for qutrits.

This technique can be readily generalized to implement
higher-order n-control-qubit Toffoli gates (nt) by harnessing a
single (n+1)-level information carrier during computation and
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Figure 1 | Simplifying the Toffoli gate. a, Most efficient known
decomposition into the universal gate set CNOT+arbitrary one-qubit gate,
when restricted to operating on qubits12. b, Our decomposition requiring
only three two-qubit gates11. Here, the target is a three-level ‘qutrit’ with
logical states |0〉, |1〉 and |2〉. Initially and finally, all of the quantum
information is encoded in the |0〉 and |1〉 levels of each information carrier.
The action of the Xa gates is to swap information between the logical |0〉
and |2〉 states of the target. The target undergoes a sign shift only for the
input term |C2,C1,T〉=|1,0,1〉. This operation is equivalent to the Toffoli
under the action of only three one-qubit gates, as shown. The second gate
in the decomposition is a CZ and is equivalent to a CNOT under the action of
two one-qubit Hadamard (H) gates.

only 2n−1 standard two-qubit gates11; that is, with each extra
control qubit we need an extra level in the target carrier (see
Fig. 2). Compare this with the previous best known scheme, which
requires 12n−11 two-qubit gates and an extra overhead of n−1
extra ancilla qubits12. When restrained from using ancilla, this
scheme requires of the order of n2 two-qubit gates. In either case,
we achieve a significant resource reduction, by harnessing only
higher levels of existing information carriers. For example, the
simplest knowndecomposition of the 5t requires 50 two-qubit gates
and four ancilla qubits, when restricted to operating on qubits12.
Our technique requires only nine two-qubit gates and no ancillary
information carriers.

Extension to more general quantum circuits
Figure 3 shows an extension to simplify the construction of
another key quantum circuit: the n-control-qubit unitary gate
(cnu), which applies an arbitrary one-qubit gate (u) to a target
conditional on the state of n control qubits. These circuits
have a central role in quantum computing, particularly in
the phase-estimation algorithm12. Phase estimation underpins
many important applications of quantum computing including
quantum simulation16 and Shor’s famous algorithm for factoring17.
Furthermore, the set of c1u gates alone is sufficient for universal
quantum computing; a c1u can implement a cnot and induce
any single-qubit rotation at the expense of an ancilla qubit. Our
technique can implement a cnuusing an (n+1)-level target and only
2n two-qubit gates. This is a similar improvement, over schemes
limited to qubits, to that achieved for the Toffoli12. Figure 4 shows
a further generalization to efficiently add control qubits to an
arbitrary controlled-unitary that operates on k qubits.

Potential for application
The technique that we describe is independent of the particular
physical system used to encode quantum information and the
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Figure 2 | Simplifying higher-order Toffoli gates. Three-control-qubit
Toffoli11. The Xa gate swaps information between the logical |0〉 and |2〉
states of the target. The Xb gate flips information between the logical |1〉
and |3〉 state of the target. Thus, we require access to a four-level target
information carrier: two levels in the original rail and one in each of the
dashed rails. The target undergoes a sign shift only for the input term
|C3,C2,C1,T〉=|1,1,1,1〉. This operation is equivalent to the Toffoli under the
action of only two one-qubit gates, as shown. See Fig. 1 for gate operations.
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Figure 3 | Simplifying controlled-unitary gates. a, One control qubit (we
implement a simplified version, see Fig. 5): the control operation occurs if
|C1〉=|0〉. b, Two control qubits: the control operation occurs if
|C2,C1〉=|1,1〉. VZθV† is the spectral decomposition of U, up to a global
phase factor. See Fig. 1 for gate operations.

way in which the elemental gates are realized. Consequently, it
has the potential for application in many architectures, yielding
the same resource savings. The only physical requirements are
access to multi-level systems and the ability to coherently swap
information between these levels, that is, implement the generalized
Xa gates (Fig. 2).

Fortunately, most of the candidate systems for encoding
quantum information naturally offer multi-level structures that
are readily accessible. For example, the photon has a large number
of degrees of freedom including polarization, transverse spatial
mode, arrival time, photon number and frequency. Coherent
control over and between many of these dimensions has already
been demonstrated and shown to offer significant advantages in
a range of applications such as quantum communication and
measurement18,19. Trapped ions also offer readily accessible levels
including multiple electronic and vibrational modes. Indeed,
both linear optic20 and trapped-ion21,22 quantum computing
architectures already routinely use multi-level systems to
implement two-qubit gates and realize universal gate sets. Clearly
the tools are available to exploit our technique, the benefits
of which lie at the next level of construction—building large
quantum circuits.

An immediate benefit of a significant reduction in the number
of two-qubit gates required for quantum circuits is an equally
significant speed-up in processing time. This has particular
advantages in the many cases where short coherence times are an
obstacle in the path to scalability. Furthermore, as we illustrate in
the next section, our technique brings a whole range of logic circuits
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Figure 4 | Efficiently adding control qubits to an arbitrary controlled
circuit. Circuit for a three-control-qubit unitary acting on k qubits, c3uk.
Given the ability to carry out a single instance of a c1uk, n extra control
qubits can be added at a cost of an extra 2n two-qubit gates and an extra n
levels in C1. The Xj perform as described in the caption of Fig. 2. The control
operation occurs if |C3,C2,C1〉=|1,1,1〉.

within reach of current technology, enabling the implementation
and exploration of new circuits in the laboratory.

Demonstration in a linear optical architecture
Here, we present an implementation of the Toffoli and the
c1u, using photons to encode information and linear optics to
construct the component quantum logic gates (see the Methods
section). We acknowledge previous demonstrations of a Toffoli
gate in liquid state nmr, which do not exploit our resource-saving

technique13,23–26. Our demonstration uses two-qubit gates, the
successful operation of which is indicated by detection of one
photon in each of the spatial output modes3,27–30. Such gates are
high performing, well characterized, offer fast gate speeds and have
several known paths to scalable quantum computing20,31–33. We
note that our resource-saving technique is fundamentally different
from and potentially complementary to the numerous linear optics
schemes for reducing the overhead associated with generating a
universal resource34–36; here, we are concerned with reducing the
amount of that resource required to build circuits.

Figure 5 shows schematic diagrams of our experiment (see the
Methods section). Key steps are the expansion of the Hilbert space
of the target information carrier (T ), effected by the first polarizing
beamsplitter (PBS1), and contraction back into the original space,
effected by the components in the dashed rectangle. Before PBS1, we
have a two-level system in the target rail with logical states |H〉=|0〉
and |V〉=|1〉 (horizontal and vertical photon polarization). PBS1
then moves information encoded in the logical |H〉 state into a
separate spatial mode, which bypasses the subsequent two-qubit
gates. After PBS1, we have access to a four-level system; two levels
in the top rail (t) and two in the bottom rail (b), with logical
basis states |H,t〉, |V,t〉, |H,b〉 and |V,b〉, respectively. Although
we need to use only one of the extra levels in the bottom rail to
enact our technique, we use both in our experiment simply to
balance optical path lengths. The contraction back into the original
two-level polarization qubit is carried out non-deterministically,
that is, given deterministic two-qubit gates, measurement of a single
photon at D1 heralds a successful run of the gate. This enables
a demonstration of the Toffoli and c1u without the last cnot in
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Figure 5 | Toffoli and controlled-unitary experimental layout. a, Conceptual logic circuit. A polarizing beam splitter temporarily expands the Hilbert space
of the target information carrier, from a polarization-encoded photonic qubit to a multi-level system distributed across polarization and longitudinal spatial
mode. Information in the bottom rail (b) bypasses the two-qubit gates. Detection of a photon at D1 heralds a successful implementation. R= I (the
identity) implements a Toffoli. R=Zθ (see Fig. 1) implements a C1U between C1 and T (in this case, no photon is injected into C2). b,c, Experimental circuit
and optical source (see the Methods section). We use an inherently stable polarization interferometer using two calcite beam displacers3. PPBS, partially
polarizing beam splitter; SPCM, single-photon counting module; PDC, parametric downconversion; SHG, second-harmonic generation.
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Figure 6 | Experimentally constructed Toffoli logical truth table. The
labels on the x and y axes identify the state |C2,C1,T〉. Ideally, a flip of the
logical state of the target qubit (T) occurs only when both control qubits
(C2 and C1) are in the logical |0〉 state. The ideal case is shown as a wire
grid and the overlap is I =0.81±0.03 (see the Methods section). Error
bars are shown representing one standard deviation, calculated from
Poissonian photon-counting statistics. The table required four days
of measurement.

Figs 1b and 3a, thereby making an implementation feasible with
recent developments in linear optic quantum gates37,38.

For our implementation of the Toffoli, we require four photons.
We observe a fourfold coincidence rate at the output of our
circuit of approximately 100mHz when running at full pump laser
power. Although this is not sufficient to carry out a full process
tomography27 of the gate over a practical time period, we are able
to demonstrate all of the key aspects of its behaviour. The first step
in our characterization is to test the classical action of the gate, that

is, the ability to apply the correct operation to all eight logical input
states. Figure 6 shows the experimentally reconstructed logical truth
table. In the ideal case of our implementation, the target (T )
undergoes a logical flip if, and only if, both control qubits are in the
logical |0〉 state. We measure a good overlap between the ideal and
measured truth tables39 of I=0.81±0.03, compared with 0.84 and
0.85 achieved for the original optical implementations of two-qubit
gates3,30. This is a comprehensive test of the classical action of
our gate.

The next step is to test the quantum action of the gate,
that is, the ability to apply the correct operation to input
superposition states. At our count rates, we are not able to
test a tomographically complete set required for a full process
characterization, over a practical time period. Our concession
is to test the most experimentally challenging and functionally
important cases. They are challenging because they require coherent
interaction between all three qubits and, in two cases, ideally
generate maximally entangled Bell states12. They are functionally
important because they demonstrate the gates ability to generate
and control a large amount of entanglement. This is of fundamental
importance to the advantages offered by a universal quantum
computer40 and is a standard figure of merit3–6. In the ideal
case: with an input state of |0, (0+1),0〉/

√
2, our Toffoli will

produce the entangled state |0,Ψ+〉, where |Ψ+〉 is the maximally
entangled Bell state12 (|0,0〉+|1,1〉)/

√
2; with an input state of

|C2,C1,T 〉=|1,(0+1),0〉/
√
2, it will produce the separable output

state |1,(0+1),0〉/
√
2. In the former (latter) case, the entangling

operation between C1 and T is coherently turned on (off) by C2.
We then swap the roles of the control qubits and repeat the test.
We carry out over-complete full state tomography to reconstruct
the density matrix of two-qubit output states, while projecting the
remaining qubit into its input state (see the Methods section).

Figure 7 shows the experimentally reconstructed density
matrices representing the state of a control and target qubit, at
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Figure 7 | Experimentally reconstructed Toffoli output density matrices. a, Measured output states of qubits C1 and T for Toffoli gate inputs;
(i) |0,(0+1),0〉/

√
2; and (ii) |1,(0+1),0〉/

√
2. We observe fidelities with the ideal states, linear entropies and tangles39 of (i) {0.90±0.04, 0.21±0.08,

0.68±0.10} and (ii) {0.75±0.06, 0.47±10, 0.04±0.06}, respectively. b, As for a, but where the roles of C1 and C2 have been swapped. We now observe
(i) {0.81±0.02, 0.39±0.05, 0.53±0.07} and (ii) {0.80±0.03, 0.40±0.05, 0.01±0.01}. The decrease in tangle in the (i) cases reflects the difference
between dependent and independent photon interference, as discussed in the text. c, Ideal density matrices. Note, in all cases only real parts are shown;
imaginary parts are small. Each density matrix requires 36 separate measurements28 and takes approximately three days to complete.
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Figure 8 | Experimentally reconstructed controlled-unitary gate process matrices. a–d, u=Zθ and θ=π/4 (CT) (a), θ=π/2 (CJ) (b), θ=3π/4 (CL) (c) and
θ=π (CZ) (d). (i) Real and (ii) imaginary parts are shown. We observe high process fidelities27 with the ideal {0.982±0.003, 0.977±0.004,
0.940±0.006, 0.956±0.003} and low average output-state linear entropies {0.036±0.004, 0.047±0.004, 0.091±0.005, 0.086±0.006},
respectively. Matrices are presented in the standard Pauli basis27.

the output of our Toffoli gate. We achieve a high fidelity39 with
the ideal states and a high level of entanglement, as detailed in the
figure caption. The results show that the Toffoli carries out its most
important and experimentally challenging quantum operations
with high fidelity and entanglement.

To discuss sources of experimental imperfection, we look at
the details of our linear optic implementation. A key requirement

for correct operation of each component two-qubit gate is
perfect relative non-classical interference visibility (Vr) between
two photons. This in turn requires perfectly indistinguishable
single photons. We measure Vr=100 ± 1% and Vr=92 ± 4%
for the first and second two-qubit gates shown in Fig. 5,
respectively (where Vr=Vmeas/Videal, Videal=80% and results are for
vertically polarized photons). The difference can be understood
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by considering that the former operates on a ‘dependent’ pair
of photons generated from the same pass of our optical source,
whereas the latter uses ‘independent’ photons from different
passes (Fig. 5c). Photons generated from different passes are
intrinsically more distinguishable41,42. Another contribution to
experimental imperfection are the cases when more than one
pair of photons is created simultaneously in a single pass of our
optical source. Although these ‘higher-order terms’ occur with
very low probability, and do not significantly affect the visibility
measurement due to higher-order interference processes, they can
introduce a significant error in the gate operation42.

In general, imperfections in the measured Toffoli truth
table correspond to unwanted flips of the target qubit (Fig. 6).
These can be understood with reference to the non-classical
interferences required for correct operation in each case. To better
illuminate these effects, we define a standard contrast C (see the
Methods section), which gauges our gate’s ability to apply the
correct operation to a subset of logical input states. For inputs
|C2,C1〉=|0,0〉, no non-classical interference is required for correct
operation and we measure C=0.99±0.01, averaged over both
target logical input states. Inputs |C2,C1〉=|0,1〉 require perfect
non-classical interference between dependent photons C1 and
T , for ideal operation. We achieve a near-perfect interference
visibility between vertical photons in this case. However, the
full process suffers from the higher-order photon terms. This is
reflected in an average of C=0.95±0.02. Inputs |C2,C1〉=|1,0〉
require perfect non-classical interference between independent
photons C2 and T , for ideal operation, reflected in an average of
C=0.80±0.02. Inputs |C2,C1〉=|1,1〉 require perfect non-classical
interference between both dependent and independent photons,
and are therefore the most challenging cases. Here, we observe an
average of C=0.73±0.05.

It is straightforward to show that the ratio of single to double
photon-pair emission is proportional to the pump power. Thus,
reducing the power by a factor of four should reduce these
unwanted higher-order contributions fromour source by a factor of
four from each pass. Under these conditions, we observe a fourfold
rate at the output of the Toffoli gate of only ∼1mHz and repeat
measurement of the average contrast for the most challenging
logical input |C2,C1〉=|1,1〉, over a period of five days. We observe
a clear improvement from C=0.73±0.05 to C=0.83±0.04. The
effects of photon distinguishability and higher-order terms also
cause the imperfections in the state tomographies of Fig. 7. For
example, the entangling process required to achieve Fig. 7a(i) relies
on interference between dependent photons. The process required
to achieve Fig. 7b(i) relies on both dependent and independent
photon interference. This leads to the reduced fidelity observed
in the latter case. We conclude that the dominant source of
experimental error lies in our imperfect photon source.

Our implementation of the c1u requires the generation of
two photons (Fig. 5). Even when running at 1/4 power, we
observe approximately 100Hz, which is sufficient to carry out full
process tomography27 in ∼2 h. As a demonstration, we report the
implementation of four distinct c1u gates that apply zθ rotations
(Fig. 1) of π/4 (ct), π/2 (cj), 3π/4 (cl) and π (cz) to the
target (T ) conditional on the control (C1), respectively. We fully
characterize these gates through quantum process tomography27:
Fig. 8 shows the experimentally reconstructed process matrices. We
achieve exceptionally high process fidelities, as detailed in the figure
caption. We attribute the small deviations from ideal operation
to residual higher-order emissions, imperfect mode matching and
manufactured optics41,42.

Outlook
A clear implication of our work is that using multi-level quantum
systems to encode information, rather than enforcing a two-level

structure, can offer significant practical advantages for quantum
logic. Although our demonstration enabled new photonic quantum
circuits, the resource-saving technique has the potential for applica-
tion inmany other architectures, bringing new circuits within reach
of experimental realization. An important path for further research
is to look for other practical simplifications to quantum logic that
may be possible by enabling simple steps outside the qubit Hilbert
space. The overriding sources of error in our demonstrations lie
in our imperfect photon source: both the effects of photon distin-
guishability and the presence of unwanted higher-order emissions
from parametric downconversion. Current developments in source
technology promise significant improvements in the near future.
The combination of this with recently developed photon-number
resolving detectors offers paths to deterministic and scalable imple-
mentations of our gates. A key result is that it is possible to overcome
inherent non-determinism using only a polynomial overhead in
resources20. Other important next steps are to use our circuits to
explore small-scale quantum algorithms, generate new states and
test error-correction schemes.

During the preparation of this manuscript, we became aware of
a demonstration of the Toffoli gate with trapped ions43.

Methods
Source. Forward and backward photons pairs are produced through spontaneous
parametric downconversion of a frequency-doubled mode-locked Ti:sapphire
laser (820 nm→ 410 nm,1τ = 80 fs at 82MHz repetition rate) double passed
through a type-I 2mm BiB3O6 crystal (Fig. 5). Photons are collected into four
single-mode optical fibres and detected using fibre-coupled non-number-resolving
photon-counting modules. We spectrally filter using unblocked interference filters
centred at 820±0.5 nm.

Circuit. Photons are injected from single-mode optical fibres into free space
and coupled into single-mode fibres at the outputs (Fig. 5). One-qubit gates
are realized deterministically using birefringent wave plates. Two-qubit gates
are realized non-deterministically using an established technique based on
non-classical interference at partially polarizing beamsplitters in combination with
coincident measurement28–30. Rather than directly chaining the two-qubit gates
required for the Toffoli (Fig. 5a), we use a recently developed three-qubit quantum
logic gate37,38. In linear optics implementations of two-qubit quantum gates,
state-dependent loss is used to rebalance amplitudes28–30. When incorporating
loss elements L1–3 (L1), the Toffoli (c1u) operates with a success probability of
1/72 (1/18) (Fig. 5). Alternatively, to combat low count rates, we achieve correct
balance by removing extra loss elements and pre-biasing the input polarization
states during gate characterization28–30. For the Toffoli, we use all four outputs from
spontaneous parametric downconversion—a fourfold coincident measurement
between detectors D1–4 signals a successful run.Wemeasure a fourfold coincidence
rate of approximately 100mHz when running at full pump laser power and 1mHz
at 1/4 power. For the c1u, we use only outputs C1 and T . In this case, a twofold
coincident measurement between detectors D1–2 signals a successful run. We
measure a twofold coincidence rate of approximately 100Hz when running at 1/4
pump laser power. Our imperfectly manufactured beamsplitters impart systematic
unitary operations on the optical modes. For simplicity, we corrected for these
effects numerically. Alternatively, such unitaries could be corrected with standard
wave plates.

Qualitymeasures and statistics. All error analysis is carried out using a Poissonian
distribution to describe the uncertainty in non-number-resolving photon
counting. Our state and process tomography uses maximum likelihood estimation
to reconstruct physical states and Monte Carlo simulation for error analysis27,39,44.
Measurements sets are taken iteratively, wherebymultiple sets—each taking around
1 h to complete—are recorded. This reduces the effect of optical source power
fluctuations. The overlap between two truth tables—or inquisition (I)—is defined
as the average logical state fidelity of a truth table I =Tr(mexpmideal)/d , where mexp

and mideal are the measured and ideal truth tables, and d is the table dimension39.
The standard fidelity between a mixed (measured) matrix, ρ, and the pure (ideal)
matrix (either two states or two processes) is f=〈Ψ |ρ|Ψ 〉; linear entropy is
sl≡d(1−Tr[ρ2

])/(d−1), where d is the state dimension39. For the purposes of our
error analysis, we define the contrast C=1/2{1+(pideal−pflip)/(pideal+pflip)}, where
pideal is the probability of obtaining the ideal output state and pflip is the probability
of obtaining the output state where the ideal target qubit output state has been
flipped. We calculate this property directly from the measured truth table.
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