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Abstract. We introduce and demonstrate a technique for generating a range of
novel multi-photon entangled states. Adjusting a simple experimental parameter
allows the preparation of pure states with an arbitrary level of W-class
entanglement, from a fully separable state to the maximally robust W state,
enabling full control over this entanglement class in our system. Furthermore,
the generated states exhibit a highly symmetric entanglement distribution that we
show is optimally robust against qubit loss. The ability to prepare entanglement
in robust configurations is particularly relevant to many emerging quantum
technologies where entanglement is a valuable resource. We achieve a high
quality experimental realization for the three-photon case, including a W state
fidelity of 0.90 ± 0.03. In addition, we present a new technique for characterizing
quantum states in the laboratory in the form of iterative tomography.

Large multipartite entangled states play a central role in many active areas of research including
quantum computation, communication and metrology [1]–[3]. However, while entanglement
in bipartite quantum systems is well understood, multipartite entanglement is relatively
unexplored and offers a far more complex structure; there are various types of entanglement
that present significant generation, manipulation and characterization challenges. There has
already been much theoretical work devoted to classifying and quantifying to what degree and
in which way multipartite states are entangled [4]–[7]. Recently, experimentalists have begun
to achieve the level of control over quantum systems required to generate and study multipartite
entanglement [8]–[11].
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In this paper, we explore robust entanglement between three qubits; the simplest system
in which the phenomenon can be observed. This feature is best exemplified by the well-known
GHZ and W states:

|GHZ〉 = (|000〉+|111〉)/
√

2, (1)

|W〉 = (|001〉+|010〉+|100〉)/
√

3. (2)

These states are the canonical examples of the two inequivalent classes of three-qubit
entanglement. Specifically, any state possessing genuinely tripartite entanglement can be
converted into one, and only one of these states using stochastic local operations and classical
communication (SLOCC) [4]. Entanglement in a GHZ state is maximally fragile; loss of
information about any single qubit leaves the remaining two in a separable state. Conversely,
entanglement in a three-qubit W state is maximally robust [4]; loss of the information in any
single qubit leaves the remaining two in an entangled state. The question of entanglement
robustness arises naturally in experimental situations from decoherence mechanisms involving
loss of qubits or qubit information. This is an important consideration in the many applications
where entanglement is a vital resource.

We generate and study the entanglement properties of novel states composed of three
polarization-encoded photonic qubits, introducing and experimentally demonstrating a simple
scheme for the preparation of pure states with an arbitrary amount of W-class robust
entanglement. Furthermore, we show that over the entire range the entanglement remains in
a configuration that is optimally robust against qubit loss. We achieve high fidelities with the
expected states in all cases.

We generate photons using spontaneous parametric down conversion (SPDC), figure 1.
Measurement of a four-fold coincidence between detectors D1–D4 selects, with high
probability, the cases where the source emitted two pairs of photons into optical modes 1
and 2. The polarization of two photons in the same spatio-temporal mode represents a three-
level quantum system, a biphotonic qutrit [12], with logical basis states: |03〉 ≡ |2H, 0V〉,
|13〉 ≡ |1H, 1V〉 and |23〉 ≡ |0H, 2V〉. Passing the two-photon state of mode 1 through a horizontal
polarizer prepares the state |03〉, and we then create a superposition in mode a, using a half-wave
plate set at an angle θ , of the form:

cos2 2θ |03〉+
√

2 cos 2θ sin 2θ |13〉+ sin2 2θ |23〉. (3)

Mode 2 is passed to a 50% beam splitter; detection of a single photon at D1 heralds the presence
of a single photon in mode b, which is passed through a polarizing beam splitter to prepare a
polarization qubit (|02〉 ≡ |1H, 0V〉, |12〉 ≡ |0H, 1V〉) in the logical state |02〉. Thus a qubit and
qutrit arrive simultaneously at the first 50% beam splitter in our optical circuit.

A successful coincidence measurement heralds the cases where a biphotonic qutrit exits
the central splitter in mode d and splits into single photon states in modes e and f after the
final 50% beam splitter. At the output of the circuit we find the following three-qubit joint state
across modes c, e and f :

cos2 2θ

4
|02, 02, 02〉+

cos 2θ sin 2θ

2
|12, 02, 02〉

+
sin2 2θ

4
(|12, 12, 02〉+|12, 02, 12〉−|02, 12, 12〉). (4)
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Figure 1. Conceptual experimental layout. Photons are generated via SPDC
of a frequency-doubled mode-locked Ti:sapphire laser (820 nm → 410 nm,
1τ = 80 fs at 82 MHz) through a type-I 2 mm BiB3O6 crystal. Photons are
filtered by blocked interference filters (IF) at 820 ± 1.5 nm; collected into two
single-mode optical fibres; injected into free-space modes 1 and 2; detected
using fibre-coupled single photon counting modules (D1–D4). With 300 mW at
410 nm, we observe a fourfold coincidence rate of 0.1 Hz.

This is a superposition of a separable state (first two terms) and an entangled W state (last three
terms). Choosing θ = π/4 injects a biphoton in the state |23〉 into mode a (equation (1)) and
results in a three-qubit W state with probability 1/16 (equation (2)). Choosing θ = 0 injects a
biphoton in the state |03〉 and produces a separable state of the form |02, 02, 02〉.

Quantifying the amount of genuine tripartite entanglement in a three-qubit pure state
is nontrivial. The three-tangle, defined as τ3(ρABC) = 4 detρA − CAB − CBC, where Ci j is the
concurrence of the reduced state ρi j [13], quantifies GHZ-class entanglement and, since it is
always zero for the W class [4], can be used to distinguish the W and GHZ classes. Following
the technique of [4], it is straightforward to show that our ideal output state (equation (2))
belongs to the W class for all θ 4. An entanglement monotone useful for quantifying W-class
entanglement is the tripartite negativity (N3) [14, 15], defined as N3 = (Na(bc)Nb(ac)Nc(ab))

1/3,
where the bipartite negativities are calculated using the standard definition [16]. Using this
definition, the three-qubit W state has a near maximal value of N3 = 0.94. Quantifying how
robust the entanglement in our three-qubit system is to loss requires a measure of the residual
bipartite entanglement left in the two-qubit subsystem after loss of the information contained in
qubit k (ρi j = Trk(ρi jk)). We choose to use the tangle (τ2) [13].

By varying θ between 0 and π/4 we are able to prepare pure states with any desired
amount of W-class entanglement, thereby giving us full control over this class of entanglement
in our system. This scheme can be generalized straightforwardly to generate tunable W-class
entanglement for any number of qubits. Besides the fundamental interest of how to prepare
multiqubit non-maximally entangled states in a given class, we note that, in the case of
two qubits, such states have already found important application in fundamental tests of
quantum mechanics [17]–[19]. Previous techniques for producing W states [8]–[10] do not
enable this control and could not be easily modified to achieve it. Our states also possess
another useful and intriguing property. It is straightforward to show that, for all θ , the
residual bipartite entanglement remains symmetrically distributed between each pair of qubits,

4 For all θ , τ3 = 0 and the state possesses nonzero bipartite entanglement in each bipartite grouping of the
three-qubit subsystems.
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i.e. τ2(ρce)=τ2(ρc f )=τ2(ρ f e)=4 sin4 θ/(cos 2θ − 2)2. As a result, the amount of entanglement
left in a two-qubit subsystem is always independent of which qubit is lost. Later, we will show
that the entanglement in these states is in fact optimally robust against qubit loss.

We measure three-qubit output states using polarization tomography [20] of modes c, e and
f , performing an over-complete set of 216 separate measurements [21] in four-fold coincidence
between non-photon-number-resolving detectors D1–D4. With rates of approximately 0.1 s−1,
we measure for several days to acquire sufficient counts for an accurate reconstruction. Instead
of performing a single measurement set over this time we take many shorter 80 min sets.
This iterative tomography technique provides many advantages. Most importantly, a complete
reconstruction of the density matrix is possible after each iteration, allowing analysis of how
our estimates of state properties are developing throughout the measurement process. This
allows diagnosis of serious practical problems, such as time-dependant optical misalignment,
far earlier than would otherwise be possible. Using many repeated shorter measurement sets
also makes the state estimation less prone to errors introduced by certain fluctuations in the
optical source brightness, without significantly reducing the total available integration time.
After completion we use the data accumulated across all short measurement sets to reconstruct
the final state. Our experiment is neither actively stabilized nor realigned between iterative
measurement sets. Our beamsplitters impart systematic unitary operations on the optical modes.
While the entanglement properties of our ideal or measured states are not affected by these local
operations, state fidelities are. For simplicity, we corrected for these effects numerically, but
alternatively such unitaries could be corrected using standard waveplates.

Figures 2(a) and (b) show ideal and measured quantum states for θ = π/4 (equation (2)).
We find a high fidelity with the ideal W state of 0.90 ± 0.03, which violates the entanglement
witness for a W state [22] by 7 standard deviations, and a high tripartite negativity of N3 =

0.80 ± 0.03. Note that we use the following standard definition for the fidelity between two
mixed states: F(ρ, σ )≡Tr[

√√
ρσ

√
ρ]2.

Figures 2(c) and (d) show the reduced state of qubits e and f , calculated by numerical
application of a partial trace to the states in figures 2(a) and (b), respectively. We find a
high fidelity of F = 0.94 ± 0.02 with the ideal maximally entangled mixed state (MEMS)
[16], [23]–[25]. The tangle is τ2 = 0.27 ± 0.03 (ideal: 4/9), demonstrating the robustness of
the entanglement in the three-qubit state to loss. Figure 2(e) shows how our estimates of key
properties of the generated state (figure 2(b)) developed over the iterative measurement process.
The asymptotic trends show that we measured for a sufficient period of time such that our
reconstructed states are a fair representation of the generated states.

Figure 3(a) shows experimental results for three-qubit states measured over a range of θ

(equation (2)). We find high fidelities with the ideal symmetric robust three-qubit states (see
caption). The discrepancies in the bipartite tangle seem larger than in the tripartite negativity
because tangle is a harsher measure of entanglement [16]. We also measure the reduced
two-qubit states directly by removing the polarization analysis optics from one qubit output
mode at a time and only detecting its presence as a trigger—physically realizing the loss of
qubit information. This was repeated for each qubit to test the symmetry of our measured
states. Besides offering an unambiguous demonstration of robust entanglement, this approach
offers an increased count-rate over that observed when measuring three-qubit states, allowing
shorter measurement times that are less prone to experimental drift. We perform over-complete
polarization tomography of the remaining two qubits using 36 measurements [29]. Figure 3(b)
presents the results plotted on the tangle versus linear entropy plane [23], where the linear
entropy [20] is SL ≡ d(1 − Tr[ρ2])/(d − 1), and d is the state dimension.
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Figure 2. Results for θ = π/4 (equation (2)). (a) Ideal and (b) measured
three-qubit density matrices. Fidelity F = 0.90 ± 0.03 (with the W state),
linear entropy SL = 0.20 ± 0.03, tripartite negativity N3 = 0.80 ± 0.03. (c) Ideal
and (d) measured reduced state of qubits c and f reconstructed via
ρc f = Tre(ρce f ). Fidelity F = 0.94 ± 0.02 (with the MEMS [23, 24]), linear
entropy SL = 0.61 ± 0.02 (ideal 5/9), tangle τ2 = 0.27 ± 0.03 (ideal 4/9).
(e) Iterative tomography results: we use convex optimization and fixed weight
estimation to reconstruct physical density matrices and Monte–Carlo simulations
of Poissonian photon-counting fluctuations for error analysis [26]–[28].
We use the following standard definitions: the fidelity between two
mixed states is F(ρ, σ )≡ Tr[

√√
ρσ

√
ρ]2; and the linear entropy [20] is

SL(ρ) ≡ d(1 − Tr[ρ2])/(d − 1), where d is the system dimension.
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Figure 3. Results for θ = {15◦, 21◦, 28◦, 45◦
}, equation (2). (a) Measured

(ideal) entanglement (in %) in three-qubit output states (ρce f ). Black dots are
qubits, red circles represent tripartite entanglement (N3), blue lines represent
bipartite (robust) entanglement (τ2) in reduced states (e.g. line c—e for
ρce = Tr f {ρce f }) [14]: high fidelities with ideal configurations, {0.90 ± 0.02,
0.84 ± 0.03, 0.84 ± 0.05, 0.90 ± 0.03}, and low linear entropies, {0.20 ± 0.03,
0.22 ± 0.03, 0.25 ± 0.03, 0.20 ± 0.03}, respectively. (b) Tangle versus linear
entropy plane [23] shows results for reduced two-qubit states measured directly
by removing the polarization analysis optics of other qubit, and performing two-
qubit tomography. The ideal trend (equation (2), dashed), Werner states [30] and
MEMS [23, 24] are also shown. The average fidelity with the ideal is 0.97 ± 0.02.

The dashed line shows the path of the ideal reduced states for varying θ (equation (2));
the residual tangle increases linearly with the entropy, with the pure separable state for θ = 0 at
the origin, and an MEMS for θ = π/4. Due to the symmetry properties of the ideal three-qubit
states, this trend does not depend on which qubit is lost. The results show a good correlation
with the ideal trend and high fidelities with the expected states (see caption); we can tune the
level of robust entanglement in our system.

The reduced entanglement in our results is largely due to optical mode distinguishability
caused by alignment drift during the long data runs. The improved bipartite entanglement of
figure 3(b) over figure 3(a) reflects a shorter run duration. Another source of error is the higher
order emission from SPDC [31]. Both processes introduce extra mixture into the results (there
is already mixture in the ideal two-qubit subspaces) and thereby lower the entanglement. The
bipartite entanglement is more sensitive to these effects at low θ , because weaker entanglement
can be almost completely washed out by extra mixture which would only reduce entanglement
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Figure 4. Plot of N3 versus τ2,min (equation (3)) with 300 000 randomly
selected pure three-qubit states [34]. Black curve: ideal positions of our states
(equation (2)) with θ = 0 (at the origin) to π/4. The four experimentally
measured three-qubit states (white, figure 3(a)) and three-qubit GHZ (red
triangle) and W states (blue square) are also shown. The density of states near the
boundary (our ideal states) is lower because the set of three-qubit W-class states
is of measure zero compared with the set of three-qubit GHZ-class states [4].

in a more strongly entangled state. Important ways to improve entanglement are to increase
stability (e.g. by moving to fibre- or micro-optics-based systems [32, 33]) and develop better
single photon sources. Beam-splitter reflectivity errors can affect the symmetry of bipartite
entanglement. Indeed using our measured values (with deviations ∼ 1%) with a simple model
predicts that the tangle between qubits c and f will be higher, as observed in our results.

Dür et al [4] showed that entanglement in a three-qubit W state is maximally robust in two
respects. Firstly, it maximizes the ‘weakest link’ residual tangle between two-qubit subsystems,
namely:

τ2,min(9abc) = min {τ2(ρab), τ2(ρac), τ2(ρbc)}, (5)

where 9abc is any pure three-qubit state and, e.g. ρab = Trc{9abc}. Secondly, it has the
highest average residual tangle over the two-qubit subspaces. Figure 4 shows N3 versus
τ2,min (equation (3)) for 300 000 pure three-qubit states randomly selected using the Haar
measure [34, 35], with the colour scale representing the three-tangle (τ3). The black line shows
the curve for our ideal states (equation (2)), from the separable state at the origin (θ = 0) to
the W state (θ = π/4), which reaches the maximum possible τ2,min value of 4/9. This line
clearly represents a boundary in robust configurations of entanglement: for a given level of
genuine pure-state three-qubit entanglement (N3) the weakest bipartite link between any pair
of qubits in our ideal states is of optimal strength. States that are not optimal in this sense
have at least one weaker bipartite link: there is a ‘linchpin’ qubit which, if lost, will leave less
bipartite entanglement between the remaining qubits. Figure 4 includes the positions of the four
measured states shown in figure 3(a). Note that, even though our measured W state has a fidelity
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of over 90% with the ideal, the value of τ2,min is less than half of the expected value. Clearly
maximizing this property is far more experimentally challenging than achieving a high state
fidelity. Similar numerical simulations show that our ideal states are not optimal with respect to
the average residual entanglement. However, states that improve on ours in this respect do so at
the expense of losing a symmetric distribution of entanglement; they always have at least one
weaker bipartite link which is less than (or equal to) the weakest link entanglement in our states.

In conclusion, we have demonstrated and fully characterized a new level of control over
multipartite entanglement in the laboratory. Our scheme provides tunable control over the level
of W-class entanglement between three or more photonic qubits. Furthermore, as we tune
the entanglement, it always remains in a highly symmetric configuration that is optimally
robust against information loss—a desirable feature in many experimental situations where
entanglement is a valuable resource. We predict that the ability to store, generate or transmit
entanglement in such low loss configurations will be important in the emerging field of quantum
technology.
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