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Parametric downconversion and optical quantum gates: two’s company, four’s a crowd
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We show that the primary cause of errors in a broad class of optical quantum-logic gates are due to the higher-
order photon terms in parametric downconversion sources. A model describing real-life imperfections in these
entangling gates is presented and tested in an experiment where we entangle dependent photons from the same
downconversion source using a controlled-z gate, and measure the state tomographically. We find good
agreement between the modelled and measured results. Our investigations demonstrate that, although small,
these noise terms are amplified by the intrinsic non-determinism of the gates. It is worth considering alternative
schemes based on weak nonlinearities to see if they are more resilient to this degradation.
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1. Introduction

Quantum computing promises computational power

beyond that possible with the current paradigm based

on classical information theory. Driven by this, many

different physical systems have been explored experi-

mentally, including atoms [1], ions [2,3], superconduct-

ing circuits [4], and photons [5]. All of them satisfy

some necessary requirements for being a scalable

architecture [6], but still several technical problems

have to be efficiently solved. Photons are particularly

attractive, since they are robust against decoherence,

and can be easily initialised in high-purity states.

The main limitation comes from their exceedingly

small intrinsic interaction strength. In fact, the

entangling gates necessary for quantum computing

require strong coupling between qubits. A solution has

been found in the combination of linear-optical

elements, measurement, and feedforward: by a mea-

surement-induced nonlinearity it is possible to achieve

deterministic entangling gates [7]. There are known

paths to a scalable architecture, both in the conven-

tional circuit model [5,7], and measurement-based

computation using cluster states [8–10]. Linear optical

entangling gates have been shown to be highly

performing [11], accurately characterised [12] and fast

with respect to the qubit decoherence time [13].
The above optical quantum computing schemes

assume the availability of Fock states, that is, single
photons in a well-defined spatio-temporal mode.
Such sources are not yet available experimentally and
state-of-the-art practice is to use pairs of photons
generated in spontaneous parametric downconversion
(SPDC), where measurement of a photon in one mode
flags the presence of a single photon in the correlated
mode [14]. Although a good approximation, this does
not provide a true single-photon source, since the pairs
of photons are generated spontaneously and there
is a finite probability of two or more pairs being
produced. This probability scales with the source
brightness, which due to better coupling efficiency
and new nonlinear materials has increased six orders of
magnitude since the first demonstration of SPDC [15].
Consequently, the deviation from the single-photon
approximation can be quite significant.

Here we investigate the effect of using SPDC
photons in linear optical entangling gates. To date
such gates have been used for entangled state genera-
tion, for instance in cluster synthesis, and in the circuit
model, where the quality of the entangling process is
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paramount. We focus on the generation of entangled

states; we quantify the outputs by using tomography

[16], and compare them to our model which accounts

for higher-order photon terms, circuit imperfections,

and photon loss. Different from previous studies [17],

our model is not limited to obtaining a prediction of the

non-classical interference visibility, but provides an

expression for state tomography outcomes. We show

that in current experiments noise due to higher-order

photons terms quickly becomes the dominant error as

source brightness is increased, overwhelming the errors

expected due to mode mismatch.

2. Experiment

We implement an entangling gate, the controlled-Z gate

(CZ), which ideally consists of a non-classical inter-

ferometer where one polarisation component of each

photon can interfere, and the orthogonal components

do not interact. Such gates have been realised

with Jamin–Lebedev interferometers [12,18–21], with

partial-polarising beam splitters [11,22–26], and with

integrated optics [27]. Figure 1 shows a schematic of

the realisation we use here: single photons meet at the

surface of a partially polarising beam splitter (PPBS),
whose reflectivities for the horizontal, H, and vertical,

V, polarisations are ideally �H¼ 1/3 and �V¼ 1. If both

photons are vertically polarised no interference occurs;

if both are horizontally polarised non-classical inter-

ference occurs resulting in a �-phase shift. The input

states are pre-biased to compensate for the intrinsic
polarisation-dependent loss, i.e. single photons

polarised in each output as j �Di¼ð
ffiffiffi
3
p
jHiþjViÞ=2 will

ideally give the maximally entangled output state

j�þi ¼ ðjHAi�jVDiÞ=
ffiffiffi
2
p

, where D and A represent

diagonal and anti-diagonal polarisation.
Tomographic measurements of the states are

obtained by a series of projective polarisation measure-

ments [28]. The high twofold count rate allows us to

adopt an overcomplete set of measurements, {p, q},

where p, q2 {H,V,D,A,R,L}, and R and L are the

right- and left-circular polarisations. The overcomplete
set is desirable as it is more accurate and more resilient

to noise [29]. As it has been seen in previous

experiments, we found that the states were not perfect,

although close to the ideal. To understand why this is

the case, we model three key components: the source,
the optical circuit, and photon losses.

3. Model

3.1. Source

Parametric downconversion is one of the most widely

used technologies for producing single photons and

photon pairs. Although the modes from downconver-

sion are well defined in terms of frequency, polarisa-

tion, and spatial and temporal extent, they suffer
a range of undesired features: there is a wide frequency

bandwidth making coupling to atomic or ionic

transitions difficult; the efficiency of downconversion

is low, of the order of 10�2, which limits timing

control, and since it is a spontaneous process there is

no control of photon number1. For a given polarisa-
tion and spatiotemporal mode, the downconversion

output can be expressed as a power series,

j iSPDC¼ Af a
y

f1a
y

f2 þ
A2

f

2
ðayf1Þ

2
ðayf2Þ

2
þ � � �

 !
j0ij0i, ð1Þ

where ayf1,a
y

f2 are creation operators of the two down-

conversion modes, and An
f is the probability amplitude

of producing n pairs of photons; the probability, jAfj
2,
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Figure 1. Schematic of the two-photon down conversion
source and of the optical entangling gate. A frequency
doubled laser beam (�p¼ 410 nm, duration 100 fs, repetition
rate 80MHz) excites downconversion in a �(2) crystal.
Photons are generated on modes f 1 and f 2. The light is
frequency filtered (��¼ 3 nm), and coupled to single-mode
fibers. In the experiment we used a 2mm BiB3O6 (BiBO)
crystal. The qubits are encoded in photon polarisation, states
are prepared and analysed using a combination of a polariser
(PBS), a quarter-wave plate (QWP), and a half-wave plate
(HWP) [16]. The entangling gate is based on a single partially
polarising beam splitter (PPBS), selective interference leads
to a controlled sign shift (details in the text) [22–24]. Photons
are detected by fibre-coupled counting modules (FC-SPCM,
model Perkin-Elmer AQR-14 FC), connected to a twofold
coincidence circuit. (The colour version of this figure is
included in the online version of the journal.)
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is linearly proportional to the pump intensity [30]. Here

we truncate the expansion to neglect terms higher than
two pairs due to their small effect.

3.2. Optical circuit

The components in the optical circuit are engineered
with a range of precisions: the polarising beam
splitters are Glan–Taylor, with extinction ratios of
10�5; the half- and quarter-waveplates induce relative
phase shifts which are correct to within �2�; the
partial-polarising beam splitter has measured reflec-
tivities of �H¼ 0.35, instead of 1/3 and �V¼ 0.99,
instead of 1. The Glan–Taylor beam splitter intro-
duces negligible error compared to the other compo-
nents. Errors introduced by waveplates can be
compensated either in the experiment by additional
waveplate elements, or in the analysis by numerical
rotation of the states – we do the latter here.
The errors introduced by the PPBS cannot be

corrected so we model its effect by using the following
mode transformations, Uygate:

�ay1,x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x

p
ay1,x þ i

ffiffiffiffiffi
�x
p

ay2,x,

�ay2,x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �x

p
ay2,x þ i

ffiffiffiffiffi
�x
p

ay1,x, ð2Þ

where ay1, a
y

2 are the input modes, �ay1, �ay2 the output
modes, and the index x¼H,V identifies the polarisa-
tion. In the alternative Jamin–Lebedev architecture the

reflectivities can be tuned with far greater precision
[18], but this is less appealing in the long term as it
is more difficult to implement in micro-optical
devices. Better precision PPBS could be obtained by
use of more expensive bulk-optics, or by moving to
well-engineered micro-optics [27].

3.3. Photon loss

Photons can be lost due to inefficiencies in fibre
coupling, both before and after the PPBS, reflections
and absorption in the optical components (90.5% per
component), reflection and absorption in the frequency
filters (�50% per filter over the whole bandwidth), and
limited efficiency in the photon counters (at 820 nm we
lose �40%). Due to the linearity of our circuit, we can
model the combined effect of the losses by assuming
lossless components and introducing a beam splitter in
front of the detectors, where its transmittivity is the
probability for a photon to survive in that mode.

We assume that the transmittivity is the same for both
polarisations.

We are only considering cases with at least one

photon in each output mode – in the absence of higher-

order terms we could disregard loss as it would only
reduce the number of events. However, as we shall see,
the combination of loss and multi-pair emissions
affects the signal-to-noise ratio in a more complex
fashion. Experimentally, losses in the mode j¼ {f 1, f 2}
can be estimated from the coincidence to singles ratio.
The photon loss probability is given by

kj ¼ 1�
Cj,l � Aj,l

Sl � Bl
, ð3Þ

where the coincidence count rate between modes j, l,
Cj,l is corrected for accidental counts, Aj,l, and the
singles count rate in mode l, Sl, is corrected for
background counts, Bl; all parameters are measured
directly. Our gates operate in a high loss regime. In our
experiment, kf1¼ 0.929, kf2¼ 0.946: here we do not
correct for accidentals or background since they are
negligible. The effect of the losses is modelled by
a polarisation-insensitive beam splitter with transmit-
tivity

ffiffiffiffi
kj

p
on each mode; the corresponding transform

U
y

loss affects the input mode as

ayj !
ffiffiffiffi
kj

p
ayj þ i

ffiffiffiffiffiffiffiffiffiffiffiffi
1� kj

p
ayj,loss: ð4Þ

For the gate input, we need to consider two different
loss modes for each polarisation; therefore, we have
four loss modes.

3.4. The full model

We propagate the input state through the PPBS, Uygate,
and losses, U

y

loss (where the loss beam splitters
introduce an extra mode for each polarisation of
each output), obtaining the output state,

j iout¼U
y

lossU
y
gate j iSPDCj0i

�4
loss

� �
, ð5Þ

where j0i�4loss represents the loss modes for the
orthogonal polarisations of each spatial mode. At
the gate input, the state preparation is set so that
both spatial modes are �D-polarised. We compute the
coincidence probability for polarisation analysers set
to {p, q} in the two output arms, which simulates the
outcome of a tomographic measurement. Since the
detectors cannot discriminate between single- and
multi-photon events, we consider all terms containing
at least one photon in both detection modes, and add
the respective probabilities. We do not have to add
the amplitudes, as these terms are in principle
distinguishable and hence do not interfere. As
described above, our model of the source only
considers up to four-photon terms, so the following
detection events will lead to a coincidence in our
model: the desired signal h1jph1jq, and the noise terms
h1jph2jq, h2jph1jq, h2jph2jq, h1jph3jq, and h3jph1jq. Note
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that the tomographic procedure assumes that the
coincidence signal is purely due to the h1jph1jq term,
which is why the higher-order terms show as noise in
this reduced Hilbert space.

4. Analysis

Linear optical quantum gates work due to non-classical
interference. A standard gauge of gate performance is
to compare the visibility of the measured non-classical
interference to the expected value, Vrel¼Vmeas/V ideal.
Here, the expected value, V ideal, is calculated using the
measured beam splitter reflectivity �H¼ 0.35, and by
analyzing only the H components. The visibility is
degraded by photon distinguishability: here we expli-
citly account for the degradation due to higher-order
photon terms, but do not account for distinguishability
due to mode mismatch, be it spatial, temporal, or
frequency. Figure 2(a) plots the relative visibility versus
power for the dependent photon case; the solid line is
the prediction from our model and the data points are
measured at four different powers. The model predicts
a small decrease in visibility with increasing power; the
measured data are offset by an approximately constant
amount, which we attribute to mode mismatch. Both
the predicted and measured changes in visibility due to
the increasing power are of the order of a few percent.
Note that in our model there is only interference
between the two photons in the j1i1,Hj1i2,H term or the
four photons in the j2i1,Hj2i2,H term [31,32] – if there
were no losses, the latter term could be ruled out by
photon-number resolving detection and there would be
no decrease in visibility with power. At all powers, the
dominant source of noise is mode mismatch, it being
only at high powers that the noise due to higher-order
terms begins to play a significant role. A reasonable –
but it turns out incorrect – expectation would be that
quantum logic gates, whose operation intrinsically
relies on non-classical interference, would likewise be
affected.

In the dependent case we are interested in the
quality of the state produced by the gate, e.g. for
cluster state production. Entangled state quality can be
measured in several ways: the fidelity of the recon-
structed state � with the ideal F¼h�þj�j�þi; the
degree of purity of the state; and the degree of
entanglement, as measured by the tangle [16,28].
The model’s predictions for these parameters are
shown by the solid lines in Figure 2(b). It is striking
how severely the quality of the state is affected by the
higher-order photon terms. This behavior is qualita-
tively different to the non-classical visibility, since here
the dominant source of noise is due to the higher-order
terms. This is due to the non-deterministic nature of
the entangling gate. Consider inputting the term
j1i1,Hj1i2,V. Even with no subsequent losses to the
gate, the photons may not make it to the detectors due
to the intrinsic failure probability of the gate – in such
a case, a coincidence will not be registered. However,
now consider the higher-order term, j2i1,Hj2i2,V – the
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Figure 2. (a) Relative visibility of non-classical interference
versus downconversion pump power, Vrel¼Vmeas/Videal,
where Vmeas and Videal are the measured and ideal visibilities,
respectively. The solid line is predicted by our model based
on dependent photons, incorporating higher-order terms and
loss. The errors in the measured visibilities are obtained from
a Gaussian fit. (b) The fidelity, purity, and tangle [16,28] of
the output state of the gate versus pump power for the input
beams polarised as �D¼ð

ffiffiffi
3
p

HþVÞ=2. Solid lines are the
predictions of the model, errors in the measured data are
obtained from a Monte Carlo simulation [12,28]. The non-
unity values at zero power are due to the measured PPBS
reflectivities of �H¼0.35, �V¼0.99. Count rates were ranging
from 2 kHz at high power to 150Hz at the lowest power,
measured after the gate. (The colour version of this figure is
included in the online version of the journal.)
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intrinsic loss of the gate can populate the output modes
to produce, e.g. j1i1,Hj1i2,H, which produces a coin-
cidence, albeit an erroneous one in quantum-logic
terms. Thus, non-deterministic quantum-logic gates
are much more susceptible to higher-order photon
terms than non-classical visibility. Clearly, the data
follow the trend predicted by the model. At low powers
there is an offset, which is expected since as the power
goes to zero we expect our measures to trend to the
values solely due to mode-mismatch. We have also
observed that in more complicated circuits with lower
success probability the effect of higher-order
terms becomes even more deleterious [11], again as
expected.

Scalable optical quantum computing requires both
independent photons and arbitrary input states –
neither condition is met in the previous model
and experiment. Independent photon sources can be
obtained by triggered downconversion [33]; the entan-
gling-gates process can be quantified by quantum
process tomography. Such an experiment has been
reported in [26]; here the model has been applied to
obtain an error budget per gate in linear optical
architecture, and relate it to the threshold for fault
tolerance. As before, the model considers the effect of
higher-order terms, circuit imbalances, and loss: the
fidelity between the model and measured matrices is
very high, Fp¼ 0.967� 0.015. Poor gate performance is
primarily due to higher-order photon terms, and we
attribute the difference of 3.2% to mode mismatch. It
has been noted that if this were the only source of
error, then the gate would be in a fault-tolerant regime
[26]. With multiplexing and photon-number-resolving
detection it is predicted that the higher-order terms
could be reduced by several orders of magnitude [33].
There is a residual 2.8% drop in gate performance due
to incorrect beam splitter reflectivity: this can be
reduced by at least an order of magnitude with better
fixed-reflectivity optics or tunable optics, as mentioned
above.

In conclusion, we have shown that the primary
cause of error in an entire class of optical entangling
gate experiments [11,12,18–27] is higher-order photon
terms. This is at first a surprising result given how
small these terms are in practice; however, we have
shown that their effects are greatly magnified by the
non-deterministic function of linear optical entangling
gates. These can be limited by reducing the brightness
of the downconversion source; nevertheless, this
solution would amplify other sources of noise, such
as mechanical stability of the setup and long-term
power fluctuations. This can also affect the quality of
the state and process reconstruction due to lower
counts. A previous theoretical analysis of alternative
linear-optical schemes [34–36] found broadly similar

results, noting that gates with higher symmetry
suffered less, even if they had lower success probability
[17]. Our results highlight once more the critical
importance of developing better single-photon sources
and photon-number-resolving detectors for linear-
optical schemes. We suggest that alternative schemes
for optical quantum computing, such as measurement-
amplified nonlinearities [37] or Zeno gates [38], may
suffer less from amplification of the higher-order terms
since they are intrinsically near-deterministic; the
former scheme also enjoys the advantage that the
photonic qubits can, in principle, be fully distinguish-
able. It remains to be seen to what extent these
alternative architectures relax the constrains on single-
photon sources. In the Zeno schemes, for example,
losses degrade the performance of the gate itself [39],
unlike in the linear-optical schemes.
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Note

1. Paraphrasing Winston Churchill: parametric downcon-
version is the worse possible technology for a single
photon source, with the exception of all the others.
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Appendix 1

We sketch how to obtain the emission probability from

coincidence measurements. This is evaluated by a compar-

ison of the number of coincidences in a given polarisation,

with one PPBS input arm blocked and with both arms

unblocked. When injecting the state jtSPDCi, with both

photons polarised along the H direction, the coincidence

counts can be written as

C11 / A2
fM11 þ A4

fM22, ð6Þ

where M11 and M22 are the probabilities of obtaining

a coincidence count when injecting a single pair or

a double pair, respectively. M11 has a simple expression

M11 ¼ h1jHh1jH�outj1iHj1iH, ð7Þ

where �out is the state after partial trace on the loss modes

�out¼Trlossj 1ih 1j; ð8Þ

with

j 1i¼U
y

lossU
y
gateða

y

f1
ayf2 Þj0ij0i: ð9Þ

The expression for M22 is more complicated, due to the fact

that detectors cannot distinguish single-photon events and

two-photon events; this can be evaluated numerically once

the measured values for the reflectivities �H and �V and the

losses kf1 and kf2 are included. When one input arm is

blocked, only higher-order photons can give a coincidence

count C20, so we can write

C20 / A4
fM20, ð10Þ

where M20 is now evaluated starting from the input state

ðayf1Þ
2
j0ij0i, and carrying out the same numerical evaluation

as for M22. Notice that we are implicitly assuming that the

losses are the same in both arms. We can assume this,

introducing only a small error as the measured values kf1 and

kf2 confirm. The ratio of Equations (6) and (10) allows us to

estimate the amplitude Af. In our experiment, we found:

Af¼0.051 for 65mW; Af¼ 0.073 for 130mW; Af¼ 0.103 for

260mW; and Af¼ 0.147 for 530mW. In these regimes, the

expected higher-order term contributions are 0.25%, 0.48%,

1.05%, and 2.06%, respectively.

214 M. Barbieri et al.




