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Bose-Einstein coalescence of independent photons at the surface of a beam splitter is the physical process
that allows linear optical quantum gates to be built. When distinct parametric down-conversion events are used
as an independent photon source, distinguishability arises form the energy correlation of each photon with its
twin. We derive upper bound for the entanglement which can be generated under these conditions.
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I. INTRODUCTION

Interference of photons emitted by independent sources is
one of the most intriguing features of the quantum theory of
light and represents a remarkable departure from classical
electromagnetism �1,2�. This phenomenon is easily under-
stood if the radiation is treated in terms of creation and an-
nihilation operators, rather than by invoking the superposi-
tion principle for light waves. This purely quantum effect
represents the key feature for entanglement generation
needed to build linear optical quantum gates �3�. These
schemes rely on Hong-Ou-Mandel �HOM� effect, which is
the observed coalescence of photons on the outputs of a
beam splitter when they arrive simultaneously on the two
input ports �4�. Since this effect is due to the Bose-Einstein
statistics of photons, a classical wave description is inad-
equate to give an exhaustive picture of the phenomenon. In
the long term, these gates promise to become the basic con-
stituents of quantum computers, either in networked archi-
tecture �3,5�, or adopting one-way quantum computation ap-
proach in order to build cluster states �6–10�.

Correct functioning of these devices requires true single-
photon states. Due to the difficulty of generating such non-
classical states �11,12�, to date parametric down conversion
�PDC� has been widely used �13–16�, where high frequency
pump photons are nondeterministically converted to pairs of
frequency entangled daughter photons in a passage through a
nonlinear crystal. Independent photons can be produced via
two independent PDC processes �17–19�: of the two photons
generated in each down-conversion event, one is detected to
herald the presence of its twin, which is subsequently sent to
the nonclassical interferometer.

It is important to distinguish between imperfections in-
trinsic to the gate architecture and those which come from
nonideality of the source �19�. PDC processes generate two-
photon states in the form ���= �I+�a1

†a2
†+�2�a1

†�2�a2
†�2

+o��3���0�, with ����1. Higher order terms cannot be dis-
criminated without photon number resolving detectors,
which are not widely available. Crucially, the frequency cor-
relations of the interfering photons with their twins can in-
troduce distinguishability and, consequently, welcher weg
�which path� information. The presence of such knowledge
intrinsically reduces the visibility of the interference and the
level of entanglement of the state generated by the quantum
gate �20–22�. Many efforts have been devoted in designing

PDC sources with engineered spectral correlations �23,24�.
In the present paper, we give a theoretical analysis of the

maximal entanglement which can be produced operating a
linear optical gate with independent PDC photons. This is an
important diagnostic for quantum gate engineering, in which
we wish to know the contribution of the imperfections of the
source to the error budget �19�. Note that a first detailed
sketch of such a calculation can be found in Ref. �25,26�,
where the effect of frequency correlation on entanglement
swapping and multiphoton entanglement generation is stud-
ied. The results presented here represent a more general and
detailed approach.

II. NONCLASSICAL INTERFERENCE OF INDEPENDENT
PDC PHOTONS

Our picture begins with the theoretical treatment of down
conversion in Ref. �27�, restricting, for the sake of clarity, to
the paraxial approximation and considering the pumping
with a plane wave beam in mode locking regime. Specifi-
cally, we want to calculate the optimal visibility in experi-
ments of interference of two single photons, each one com-
ing from a frequency entangled pair, given the spectra of the
pump fields. The interferometric apparatus is the one shown
in Fig. 1: photons 1,2, and 3,4 are pairwise produced in two
distinct down-conversion processes. Consequently, photons 1
and 4 are directly coupled to the detection to provide the
trigger signal, while photons 2 and 3 interfere on a beam
splitter with transmittance T and reflectance R.

Consider, for instance, the PDC event occurring in the
upper crystal in Fig. 1. The pump beam, traveling on the z
direction, has a frequency spectrum S���p�=s���p�ei����p�

around a central value �p; s���� describes the distribution of
the frequencies and ����p� their phase relation with respect
to the central wavelength. In a single event the pump gener-
ates of two fields at frequencies �1 and �2, with wave vec-
tors k1 and k2, respectively. In these conditions, the two-
photon wave function is given by

��12� =� d�pd�1d�2���p − �1 − �2�

	S���p − �p�a1
†��1�a2

†��2��0� , �1�

up to a normalization factor. Effects due to the finite size of
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the crystal are neglected. In the other crystal, a similar
process occurs; the second pump beam is chosen to
have the same central frequency �p, and a spectrum
S
�
p�=s
�
p�ei�
�
p�.

The operator describing the photon annihilation due to its
measurement is

Ej =� d��e−4 ln 2 ���� − ��/��2
aj����� , �2�

where j=1,2 ,3 ,4 and aj����� represents the annihilation op-
erator on mode j at the frequency ��. In the expression
above we adopt Gaussian frequency filters, with central
wavelength � and full width at half maximum �FWHM� � in
front of the detectors: these define the coherence time of the
photons. We choose the same �degenerate� frequency

�=�p /2 and the same FWHM for the four filters, since
experiments are usually run near these conditions. Specifi-
cally, the measured fields at the time t are given by the fol-
lowing annihilation operators:

a1����� = e−i��t1
0
a1���� , �3�

a2����� = e−i��t2
0
�Ta2���� + Rei���a3����� , �4�

a3����� = e−i��t3
0
�T*a3���� − R*e−i���a2����� , �5�

a4����� = e−i��t4
0
a4���� , �6�

where ti
0= ti−�i /c, �i optical path of ith photon, c is the speed

of light, and � is the optical delay between the two arms �28�.
The fourfold coincidence rate is

C4��� � dt�	0�

j=1

4

Ej��12 � �34��2

, �7�

where dt is shorthand for the differential dt1dt2dt3dt4 �29�.
This integral is taken over the coincidence window we
choose in our experiment; since typically this is much larger
than the coherence time of the photons, and of the duration
of the pump pulse, we can take integrals on infinite intervals
�30�. The calculation is then reduced in evaluating the am-
plitude

A�t1,t2,t3,t4;�� = 	0�

j=1

4

Ej��12 � �34� . �8�

We use the coordinate transform t+
� = �t1

0+ t2
0� /2 , t+




= �t3
0+ t4

0� /2 , t−
� = t1

0− t2
0 , t−


= t4
0− t3

0. We also introduce frequency
detuning for the PDC: �i=�i−�. Notice that �1+�2=�p, �3
+�4=
p. Finally, it is found to be more convenient to ex-
press the amplitude in terms of the differences �−=�1−�2,

−=�4−�3, thus

A�t+
�,t−

�,t+

,t−


;�� =� d�pd
pd�−d
−S���p�e−��2 ln 2�/�2��p
2
S
�
p�e−��2 ln 2�/�2�
p

2
e−��2 ln 2�/�2���−

2+
−
2�

	 ��T�2�e−i�pt+
�
e−i
pt+



e−i�−t−

�/2e−i
−t−

/2� − �R�2�e−i��p/2��t+

�+t+

+�t−

�−t−

�/2−��e−i�
p/2��t+

�+t+

−�t−

�−t−

�/2+��

	 e−i��−/2��t+
�−t+


+�t−
�+t−


�/2−��e−i
−/2�t+

−t+

�+�t−
�+t−


�/2+���� . �9�
We neglect a global phase and normalization constants which are unnecessary for our calculations, since we will deal
exclusively with ratios. If the integration over the frequencies is carried out we arrive at the expression

A�t+
�,t−

�,t+

,t−


;�� = �T�2�F��t+
��F
�t+


�e−�0
2�t−

��2
e−�0

2�t−

�2

� − �R�2F���t+
� + t+


 +
t−
� − t−




2
− ��� 2�

	F
��t+
� + t+


 −
t−
� − t−




2
+ ��� 2�e−�0

2�t+
� − t+


 + �t−
� + t−


�/2 − ��2
e−�0

2�t+

 − t+

� + �t−
� + t−


�/2 + ��2� , �10�

where F��t� is given by the convolution

FIG. 1. �Color online� Schematic Hong-Ou-Mandel interferom-
eter for independent photons. S���p� and S
�
p� represent the pump
spectra for the upper and lower beam, respectively. These produce a
photon pair on the modes a1

† and a2
†, a3

† and a4
†, respectively. Mea-

surement of a photon in the jth detector is described by the destruc-
tion operator Ej.
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F��t� =� dt�S̃��t��e−4�0
2�t − t��2

, �11�

�0
2=�2 /32 ln 2, and S̃��t� is the Fourier transform of the

pump spectrum. F
�t� is defined in a similar way for the
second pump.

The degree of indistinguishability in HOM interference is
measured by its visibility, defined as v=1−Cm /CM, with Cm
the coincidence rate at optimal temporal superposition of
wave packets �occurring at a delay �0� and CM the rate in
absence of interference. We thus can express v in terms of
the amplitude A�t+

� , t−
� , t+


 , t−

 ;��,

v =
2�TR�2

�T�4 + �R�4
Re�IS��0��

IN
, �12�

where we have defined

IS��� =
��

2�0
� dx1dx2dx3F�

*� x1 + x2

2
�F


*� x1 − x2

2
�

	F�� x1 + x3

2
�F
� x1 − x3

2
�e−2�0

2�x2 − ��2
e−2�0

2�x3 + ��2
,

�13�

IN =
�

2�0
2 � dx1�F��x1��2� dx2�F
�x2��2. �14�

A physical interpretation of the integral IS��� is not straight-
forward; nevertheless, it is evident that not only the time
symmetry of each profile is involved, but also nontrivial cor-
relations between the two pump pulses. The fact that visibil-
ity is linked to the pump temporal profile in such a nontrivial
way stresses the fact that this interference process is much
more demanding than the one with correlated photon. The
same pulse shape that gives a perfect HOM effect with fre-
quency entangled photons could be only partially suitable to
reach high visibilities with independent photons. We can de-
rive a simpler form for IS�0� in the case of infinitely large
filters. In this case we find

IS�0� � dx1�S̃��x1��2�S̃
�x1��2. �15�

By invoking Parseval’s theorem, we can rewrite Eq. �15� in
the frequency domain

IS�0� � d�0�S� � S
��0��2, �16�

where the star denotes the convolution. More generally, a
sufficient condition for achieving near perfect visibility is
that the convolutions have to be solutions of the integral
equation:

F��x + y�F
�x − y� =
4�0

��
� dze−8�0

2�y2+z2�F��x + z�F
�x − z� .

�17�

It can be demonstrated that the condition of maximum vis-
ibility correspond to pump pulses which are much narrower

in time than the coherence time imposed by the filters. In

fact, the solutions of Eq. �17� are F��t�=F
�t�=e−4�0
2t2; this is

obtained by replacing S̃�t� with a Dirac distribution. Substi-
tution in Eqs. �13� and �14� leads to the maximum visibility
v=1 and Gaussian modulation of the interference pattern ob-
served with correlated photons �4�. The considerations above
indicate which physical process spoils the visibility �25,26�.
When monochromatic pump beams are used, this imposes a
very strict correlation to the frequency of the PDC photons.
Hence, within the bandwidth of the filters some four-photon
events do not interfere, since the wavelength of the two trig-
ger photons may be used to reconstruct the path information.
For instance, consider the event in which, after the beam
splitter, photons 1 and 2 have exactly the frequency �p /2,
and photons 3 and 4 are slightly detuned at the sides of the
filter bandwidth. This can be realized by a unique configura-
tion, viz. photons 1 and 2 from the first crystal and photons 3
and 4 from the second one. No event with the same wave-
lengths can be observed when photons 1 and 3 belong to the
first pair and photons 2 and 4 to the second pair. When the
frequency correlation is smoothed by adopting broader pump
beams, such an information is erased and, consequently, high
visibility is restored. This descends from the fact that we
introduced further four-photon events which now cancel the
ones previously noninterfering. This process has been indi-
viduated as the responsible for degradation of polarization
entanglement in similar experiments of multiphoton en-
tanglement creation from entangled pairs �25,26�.

As an example, we consider a Gaussian spectrum with
chirping,

S���p� = e−4 ln 2 ��p/���2
ei��1

����p+�2
����p

2�, �18�

which gives in the convolution of Eq. �11�,

F��t� =
1

��� + 4�0
2
e−�4�0

2���t − �1
����2�/���+4�0

2�, �19�

where ��= 1
4 � 4 ln 2

��
2 − i�2

����−1. A similar expression holds for

F
�t�. Figure 2 show the maximum visibility v0= �T�4+�R�4

2�TR�2 v as

a function of the filter bandwidth without chirping. This is
plotted for the condition of expected maximum visibility �0
=0. We find that high visibility is achieved with narrow fil-
ters and short duration, hence large bandwidth pulses. An
imbalance in the bandwidth for the two pulses appears as a
further source of distinguishability; Fig. 2 also show varia-
tions in the visibility curve as the ratio �
 /�
 varies. It is
clear that the control on this parameter does not need to be
extremely accurate to achieve satisfactory values; what pri-
marily influences the visibility is the presence of a narrower
bandwidth pump pulse, rather than the imbalance of the two
pump bandwidths.

Phase dispersion effects of the second order are far less
important. The second order coefficient �2

��� is responsible

for a broadening in time of S̃��t� with respect to the non-
chirped case. When narrow filters are used, its effects are
negligible if the ratio �2

��� / �4 ln 2 ��
−2�remains of the order of

few units. The linear coefficient �1
��� describes a shift on the
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time axis, and can be use to described time jitter between the
two pulses. When the pump beams are synchronous
��1

���=�1
�
�=0�, maximum visibility occurs at �=0; if the

following pulses are separated by a jitter time Tj �i.e.,
�1

���=0, �1
�
�=Tj�, the interferometer is not working at its

best delay, consequently, the visibility decreases to the value
v�Tj�. An average over the total measurement time leads to
the expected value �dTjv�Tj�P�Tj�, being P�Tj� a proper dis-
tribution for the jitter �18�.

III. POLARIZATION ENTANGLEMENT GENERATION
VIA HOM INTERFEROMETRY

As said, HOM effect is the basic ingredient for building
linear optical gates �3�. In particular, we can adopt interfer-
ence on a partially polarizing beam splitter with �TH�2=1/3
��TV�2=1� for the horizontal-H �vertical-V� polarization to re-
alize a nondeterministic controlled-sign gate �14–16�. The
model depicted above can be utilized to calculate how much
frequency entanglement affect the performance of such a
gate when it is used for entanglement generation. We de-
scribe entanglement generation via a partially polarizing
beamsplitter with TH=1/3 and TV=1, where extra losses on
vertical modes are induced in order to obtain a correct bal-
ancement in the entangled state. In this architecture, vertical

photons never meet at the surface of the beam splitter, while
horizontal photons undergo HOM effect. This realizes the
controlled interaction, together with postselection via mea-
surement. If a pair of photons with diagonal polarization
�D�= 1

�2
��H�+ �V�� impinges on the beam splitter, by postse-

lecting coincidence events we generate the entangled state

��� =
1
�2

��VV� + �VH� + �HV� − �HH�� , �20�

since �HH� events are phase-shifted by the interference. In
the nonideal case, the polarization couples to the wave func-
tion of the pair in the time domain, leading to the following
expression for the state of the pair:

1
�3 + �2

��A���VV� + �HV� + �VH�� + ��B��HH�� , �21�

where �A� describes the time behavior without interference,
and �B� is the time behavior with interference. Ideally, we
would have �B�=−�A� and �=1. The state can be rewritten as

1
�3 + �2

��A���VV� + �HV� + �VH� + �c�HH��

+ ��1 − �c�2�A���HH�� , �22�

where c= 	A �B�, and �A�� is an orthogonal vector to �A�. By
tracing out the temporal part, the polarization density matrix
is obtained,

�� =
1

1 + �2 �����	��� + ���2�1 − �c�2��HH�	HH�� , �23�

being ���� the non-normalized vector �VV�+ �HV�+ �VH�
+�c�HH�. In the case under investigation, we can identify up
to the normalization,

	0�A� = F��t+
��F
�t+


�e−�0
2�t−

��2
e−�0

2�t−

�2

, �24�

	0�B� = A�t+
�,t−

�,t+

,t−


;�� . �25�

Consequently, we find

c =
3

�5�1 − v�
�1

3
−

5

6
v� , �26�

� = �5�1 − v� , �27�

in the case in which IS��� is a real function. It is straightfor-
ward to check that c and � reach their ideal values in corre-
spondence of the optimal visibility vid=0.8. A simple relation
between the visibility and the degree of entanglement in the
state �23�, quantified via the tangle �31� is found,

T�v� =
25v2

�8 − 5v�2 . �28�

The plot in Fig. 3 shows the behavior of this curve as a
function of the relative visibility v /vid; it is clear that the
degree of entanglement rapidly is degraded as the visibility
decreases. Tangle remains well under the value 0.9, even for
values of the visibility which are commonly considered more

��=12nm

��=6nm

��=3nm

�µ/��=2

��=3nm

�µ/��=10

�µ/��=.5

�µ/��=.2

��=1nm

Filter bandwidth (nm)

Filter bandwidth (nm)

V
is
ib
il
it
y

V
is
ib
il
it
y

�µ/��=1

FIG. 2. �Color online� Visibility v0 as a function of filter band-
width � in absence of phase dispersion. Top: both pump spectra are
Gaussian profiles with the same FWHM ��=�
. Different plots
correspond to different values of ��. Bottom: the two Gaussian
spectra have different FWHM’s. Plots relative to different ratios
�
 /�� are shown for the case ��=3 nm.
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than satisfactory in experiments. Thus, the maximum attain-
able entanglement strongly depends on the choice of the
pump and the detection bandwidths, as shown in Fig. 4 for
the case of Gaussian pumps. A comparison of the figures
indicates that tangle is a much stricter criterion in designing
an experiment.

IV. DEPARTURES FROM THE IDEAL CASE

The results obtained above neglect the finite size of the
crystal and the effect of phase dispersion of the PDC pho-
tons; therefore they remain valid in the limit of short crystal.

So far we have disregarded the fact that the crystals have
finite thickness. If this is taken into account, the state �1� has
to be modified as

��12� =� d�pd�1d�2���p − �1 − �2�����p − �p,�1 − �2�

	S���p − �p�a1
†��1�a2

†��2��0� , �29�

where ����p ,�−� is the function describing nonperfect phase
matching. The amplitude �10� is modified by substituting

F��t�e−4�0
2t�2

with the convolution,

G��t,t�� =� dsds�F��s�e−4�0
2s�2

�̃��s − t,s� − t�� , �30�

where �̃��t , t�� is the two-dimensional Fourier transform of
����p ,�−�. A similar substitution should be carried out for
the second pump beam.

In the case of degenerate type-II phase matching, this can
be approximated as �27�

����p,�−� = sinc��p�p + �−�−� , �31�

being �p and �− constants which depend on the length L and
the dispersion in the crystal, viz.

�p =
L

4
� 1

uo���
+

1

ue���
� −

L

2ue��p�
,

�− =
L

2
� 1

uo���
−

1

ue���
� , �32�

where uo��� �ue���� is the group velocity dispersion for an
ordinary �extraordinary� beam at the frequency �. In this
case, the expression for its transform is

�̃��t,t�� =
1

�p
rect� t

�p
���t� −

�−

�p
t� , �33�

which leads to the result

G��t,t�� =
1

�p
�

−�p/2

�p/2

dsF��t + s�e−4�0
2�t� + ��−/�p�s�2

. �34�

Note that in the short crystal limit �p→0, we restore the

expression G��t , t��=F��t�e−4�0
2�t��2

. In the opposite limit of
infinite crystal the correlation �31� becomes perfect,

�p = −
�−

�p
�−. �35�

Being �p ,�− linearly dependent on the crystal length L, the
ratio

�−

�p
remains finite when passing to this limit. Such a

correlation implies that a PDC pair with a frequency mis-
match �− can be generated only by the component of the
pump beam detuned of −

�p

�−
�p. Therefore, it can reduce the

advantage of using a broad spectrum pump, since the crystal
itself limit the matching bandwidth. As an example, in Fig. 5
the results for degenerate type-II PDC from a 400-nm pump
pulse are shown for two widely adopted materials: LiB3O5
�LBO� and BaB2O4 �BBO�. The pump bandwidth is 5 nm,
while the detection filters are chosen to have 2-nm FWHM:

T
an
g
le

Relative Visibility

FIG. 3. �Color online� Plot of the tangle in the polarization state
of Eq. �23� as a function of the HOM visibility, normalized to its
maximum value vid=0.8.

Pump bandwidth (nm)

V
is
ib
il
it
y

8nm

�=2nm

4nm

6nm

Pump bandwidth (nm)

T
an
g
le

8nm

�=2nm

4nm

6nm

FIG. 4. �Color online� Comparison of the plots of the relative
visibility and the tangle in the polarization state in Eq. �23� as a
function of the pump bandwidth in the case of a Gaussian pump.
Different curves correspond to different values of the detection
bandwidth.
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in the ideal case, these values give near perfect visibility. It is
clearly shown that the finite size of the crystal can be ne-
glected for thicknesses in the range 2 mm to 4 mm. This is
the size of bulk crystal slabs commonly adopted in experi-
ments. At these wavelength, the adoption of LBO instead of
BBO reduces the distinguishability effect. Anyway that
would cause a significant reduction in the brightness of the
source, given the smaller nonlinearity of LBO.

As a final remark, we note that when using type-II PDC it
is convenient to use the signal photons as triggers and the
idler photons in the interferometer. In fact, distinguishability
of signal and idler photons can arise from different disper-
sion in the PDC crystal due to birefringence.

V. CONCLUSION

The results we have presented indicate that when running
entangling gates with independent PDC photons, large band-
width pulses are somehow preferable to narrow ones. Their

adoption reduces the welcher weg knowledge in the interfer-
ence process coming from frequency entanglement. We
showed that visibility has to be considered a forgetful param-
eter in the design of these experiments. The nontrivial rela-
tion between tangle and visibility implies that the conditions
to fulfill to attain a high level of entanglement are stricter
than those for reaching near perfect visibilities. Such an ef-
fect of frequency correlation can be easily reduced by prop-
erly choosing pumping and detection conditions with exist-
ing materials. Further investigation of this process can
include the effects of group velocity dispersion on the arrival
time of the PDC photons, resulting in a time jitter �33�.

At a first sight, it might seem counterintuitive that broad-
band pumping is better than single mode pumping; in fact it
has been commonly observed that interference of dependent
photons in pulsed regime is more difficult to reach than with
cw pumping. Nevertheless, using a mode locked pump per se
does not present in principle limitations. For the independent
photon case, the actual temporal shape of the pump pulse is
crucial, since knowledge comes from nontrivial correlations
between the pump pulses. In real life implementations, other
sources of imperfections may impose restrictions on pump
and detection bandwidth, e.g., dispersion in dielectric mir-
rors, wavelength-sensitive performance of beam splitters.
Furthermore, restricting the duration of the pump pulses is
less resilient to jitter and narrow detection filter reduce the
apparent brightness of the source, leading to longer measure-
ment times.

Note added. Recently, we become aware of a paper
presenting a similar treatment �34�.
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