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Quantum theory of the far-off-resonance continuous-wave Raman laser:
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We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-
Langevin approach. We show that the simplified quantum Langevin equations for this system are mathemati-
cally identical to those of the nondegenerate optical parametric oscillator in the time domain with the following
associations: pump- pump, Stokes- signal, and Raman cohereneeidler. We derive analytical results for
both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In
the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent
agreement with experimental observations. The analytical time-dependent results predict perfect photon statis-
tics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.
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[. INTRODUCTION AND MOTIVATION past-pulsed Raman work lies in the fact that pulsed Raman
systems typically do not include a laser oscillator. Instead,
There has been a significant amount of theoretical workhe pulsed systems are most often pumped longitudinally
addressing the quantum mechanical nature of pulsed Ramanrough long cells filled with the Raman gas, sometimes with
laser system§ 1], and references thergjrbut little attention  multiple (nonoverlapping passes. The emission from these
was devoted to the continuous-wat@v) regime until the pulsed Raman systems might therefore be more accurately
late 1980s and the 1990s. At that time, three-level atomslassified as amplified spontaneous emission, rather than la-
interacting with quantized field modes were analyzed in theser emission. For this reason, the theoretical methods and
process of identifying and characterizing nonclassicalimits that we employ to treat our well-established laser
sources of light. For such atoms in the-configuration, mode are often very different from those used to treat pulsed
many competing processes can contribute to the overall dyRaman systems. Many of the fine details that are omitted
namics of the system. These processes include optical bist&com the present work for the sake of brevity can be found in
bility [2], traditional population-based lasifg], lasing with- ~ Chapter 3 of Ref{17].
out inversion [4—6], and electromagnetically induced In a closely related work, Rebic and co-workgtd] ex-
transparency{ 7] in addition to two-photon Raman lasing amine a similar system, but focus on the case where no decay
[8—11]. More general treatments of three level systems haveath from the final Raman state to the ground state is present
also been performed, which can accommodate many of thede close the pump cycle. In their analysis, the final Raman
processe$l2-15. state population returns to the ground state via coherent in-
The present treatment is motivated by the experimentaleractions with the cavity field moddsnti-Stokes genera-
realization of far-off-resonance cw Raman lasers in diatomidion). Decay of the final Raman state population is critical to
hydrogen gas using high-finesse cavity enhancement of bothe results presented in this work. In another related work,
the pump and the Stokes field5]. The hydrogen molecules Poizat, Collett, and Wall§18] examine two field modes in-
can be modeled as three-levklsystems. The primary fea- teracting with a collection of three-level atoms in ladder or
tures that make this system unique &t¢ the optical fre- cascade configurations. Olsen, Gheri, and WELS] note
guencies involved are extraordinarily far off resonance fronthat this system can exhibit similar behavior to the corre-
any single-photon atomic transitiondence the need for spondingA-configuration in certain circumstances.
high-finesse cavity enhancemgrnd (2) the nonradiative As an alternative to the Heisenberg-Langevin approach
decay of the final Raman level is very fast compared to therovided in the present work, one can also restrict the gen-
Raman excitation rate of this level. The fundamental differ-eral treatment of Eschmann and Balb4gB] or otherq 12—
ence between this cavity-enhanced cw Raman work and th&4] to the appropriate limits and address the system in the
Schralinger picture. We prefer the Heisenberg picture for the
present work because it lends itself more directly to the study
*Present address: JILA, National Institute of Standards and Tectef noise spectra and perhaps to the development of physical
nology, and University of Colorado, Boulder, CO 80309-0440. understanding.
TElectronic address: carlsten@physics.montana.edu After this introduction, we use Sec. Il to assemble the
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— 3 cause the thermal distributions of population for the levels
- :”; :“:_ involved are much smaller and their Raman shifts differ sig-
y31 'Y32 nificantly (much more than the Raman linewigtilom that
of Qp1(1). Although we focus on the vibrational transition,
A the model presented in this work is also valid for the purely
rotational cw Raman lasers that have been reali2dfl Fig-
0 s ure 1 shows the energy-level spacings and the optical fre-
N T - POy guencies to-scale in order to emphasize the large single-
1 1 — 2 photon detuning & in the figure present. This detuning
'Y21 (~10'® Hz) is by far the largest rate in the systéimcluding
Rabi frequencigsfor the optical powers considered. After
FIG. 1. To-scale energy level diagram for the diatomic hydrogenSec. Il we will assume that the two-photon 1-2 transition is
molecule showing the pertinent levels and the far-off-resonanceesonant, which is easily achieved experimentally. Single-
fields. photon 1-2 transitions and all other single-photon transitions
within the ground-state manifold are forbidden by selection
appropriate components of the total Hamiltonian. We therrules for this homonuclear molecule. Decays of all the popu-
generate the quantum Langevin equations for the system ofations and coherences are allowed. Detunings are repre-

erators in Sec. Il following the work of Gardiner and Collett sented byA's, population decay rates by's (denoted by the
[20]. In Sec. IV, we exploit the large single-photon detunlngbao and collisional dephasing rates B{s (with tildes, not

to simplify the equations of motion significantly. In Sec. V, ) . . .
we draw a direct connection between the far—off-resonancﬁjhOWn in the figure In this way, for instancey,, represents

cw Raman system and the cw nondegenerate optical par 1e population decay rate from level 2 to level 1. Similarly,

metric oscillatoNDOPO). In Sec. VI, we linearize the sim- Y22 Will contribute to decay of the coherences that involve
plified quantum Langevin equations and solve for the noiséevel 2.

spectra of the emitted pump and the Stokes light analytically. As Fig. 1 suggests, we invoke the rotating wave approxi-
In Sec. VII, we compare our analytical results to numericalmation (RWA) here to simplify the calculation despite the

results of a previous semiclassical treatment and we takict that it is not valid for the large single-photon detuning
several useful limits of the equations in order to solidify thepresent. We perform a similar invalid simplification by only

understanding of the underlying physics. We review our find-considering pump photon interactions with the 1-3 atomic

ings and provide some concluding thoughts in the final sectransition and the Stokes photon interactions with the 2—3
tion. atomic transition. In reality, additional upper states and other

similar atom-photon interactions exist in this system. How-
ever, Ref.[17] shows that none of these simplifications af-
II. HAMILTONIAN fects the qualitative behavior of the system; they only cause
Juantitative modifications to the Raman gain. In practice,
_this gain is determined from an empirically based parameter.
{Furthermore, the noise spectra results that we derive do not
tlepend on the Raman gain and are therefore unaffected by
ese simplifications.
The hydrogen molecules occupy the space between two
irrors of a linear high-finesse cavity. The results given in

In the interest of retaining as much clarity as possible, w
make several initial simplifications. We focus on the tempo
ral aspects of the system in this work. The effects of neglec
ing the spatial aspects are superficial and will be discussed
the text. We neglect thermal population of the upper state
because the states differ substantially in energy from the

ground state. The generation of all anti-Stokes orders angd’. ) . .
Stokes orders higher than the first are neglected in thE!S Work can be easily adapted to other cavity geometries.

present treatment because these fields are not enhancl€ incident pump light is actively frequency stabilized to a
within the cavity. The effect of cavity enhancing the first '€Sonance of the cavity. The front mirrqdenoted “0
anti-Stokes order yields interesting results and is treated els&?roughout this work serves as the input coupler for the
where[21]. We neglect the complicating effects of heat gen-PUMP light, while the back mirrofdenoted “17) is eventu-
eration, which have been observed experimentally for th&!ly treated as the output coupler for the Stokes. The total
systems that generate large Stokes po22s23. Hamiltonian d.escnblng the atoms, the f|el<_js, the _batbt;

We approximate the hydrogen molecules as three-lavel decay and noise purpogeand their mutual interactions is
systems and we allow them to interact with two quantized
high-finesse cavity modes, as shown in Fig. 1. For the pure
vibrational cw Raman lasers that have been experimentall% . . .
demonstrated in diatomic hydrogen, the most probable tran- here the components ¢f are given in the following para-

sition at room temperature i 1) with a shift of graphs. ' .
4155 cnl. For this Fz:ase Ieve?%.l(is) the ground state ( H, represents the free energy of the atoms and fields in

=0, J=1), level 2 is the first excited vibrational state ( the absence of any interactions and is given by

=1, J=1), and level 3 is the first excited electronic state, 3

which is spaced 91689 cm from the ground state. Other Hi=S %0S + hotala 2
Raman transitiong Qq,(0), for instancé are ignored be- ! ;1 @iSi qu “a%%a @

H:H1+H2+H3+H4+H5+Hbathsa (1)
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wheref w; and S_” are the_ energy and coII_ective population Kq= Kqot Kq1T KqL - (6)
operator for theith atomic state, respectively. Throughout
this work, the subscripp refers to the pump angrefers to  In Eg. (4) we assume that the cavity decay rates, and there-
the Stokes, whilgy is a general index referring to either. In fore the mirror transmissivities and absorptions, are constant
this way, the operatora, andaj refer to the annihilation and over large frequency bandwidths compared to the cavity
creation of the pumpd=p) and the Stokesq=s) photons, resonance widthéhe «’s do not depend ow). This is the
respectively, whilew$ and ¢ are the frequencies of the first Markoff approximation and is easily achieved in prac-
empty cavity modes nearest to the pump and the Stokes Olyge for this system. We also employ this approximation for
tical frequencies, respectively. H, andHs. . _

H,, represents the reversible interaction energy associated H4 represents the coupling between atomic coherences
with atom-field couplings in the electric dipole and rotating @1d atomic bath operators to generate damping and noise in
wave approximations and is given by the atoms and is given by

=i 'S1s— H.c)+i IS,s—H.c. o[ Y2
H2 'ﬁ(gp,13apsl3 H.c) |ﬁ(gs,23assz3 HC)- (3) H4=Iﬁ 7wdw 2_7;'[8’{2(60)512_312812(&))]

where the collective coherence operator between lé\aatsl

J is given byS;; andgy i represents the atom-field coupling V3

constant for tk{e fieldqrr%odq driving thei—j atomic transi- + 2_7.,1[513(“’)513_ SiB13(w)]

tion. We emphasize again here that only the pump interac-

tions with the 1-3 transition and the Stokes interactions with Yo s "

the 2—3 transition are considered. Additional terfthgt do +V 2—;[523(60)323— SBar(w)] |, (7)

not affect the results of this woylarise in Eq.(3) when the
RWA is not invoked and when other atom-photon interac-where the decay rates of the state populations, given by the

tions are included17]. y;i's, can be interpreted as coupling constants between the

Hg represents the coupling between the two active cavit;iomic system operators and the atomic bath operators,
modes and the external field baths for decay and noise puf,i-n are given byB; andB! . The decays of population
ij ij -

poses and is given by downward from level 3 and downward from level 2 are due

to SpontaneOUS emissio , al d inelastic molecular COIliSionS,
. [Kq,l) i g
l.=ih E d [ [b ‘ ( )a a'b , ( )] |eSpeCt|Ve|y

q=p.s J - Similarly, Hs represents the coupling between atomic
populations and atomic bath operators to generate decay and

[Kq1, + + noise of the atomic coherences through dephasing and is
- ﬁbqvl(w)aq_aqbqvl(w)] given by

Ka,L bt iy . ° * ’;/ii +
FN 7 Pan(@)8emabq )], @ He=ih2, | do\5 B(w)Si—SiBi(w)], (@

where the external field bath operatdg, and bgo are  \yhere they, s are the dephasing rates associated with each
coupled to thegth internal cavity mode through the coupling |eve| due to elastic molecular collisions, whid andB;; are
constantiq. Physically, this constant represents the cavityihe corresponding atomic bath operators. We model this in-
amplitude decay rate due to transmission through the fronraction after Gardiner and Zollg25] and Eschmann and
(input coupley mirror (signified by the subscript 0). Simi- gg|lagh[15].

larly, subscripts 1 andi signify that the coupling constants  y __ represents the free energy of the external bath or
Kq1 and kq . represent the cavity decays due to the backesenoir modes and is given by

mirror transmission and absorption losses within the cavity,

respectively. We couple the external field bath operabgrs o

and bg’l as well ash,, and bg’,_ to theqth internal mode to ~ Mbaths™ q;;s fﬁwdwﬁw[bg,o(“’)bq,o(wwrbg,l(‘”)bqyl(“’)
model these cavity losses. The cavity decay rates are related ’

to the mirror transmissivitiesT(s) and absorptions X’s) *
through +b{ 1 (0)bg (0)]+ |  doha[Blyw)Biyw)
Kq,Oqu,OIZTrtr Kq,lmTq,lIZTrt’ Kq,L%AqIZTm 5 +BI3(“’)513(‘U)+533(‘0)523((0)]
3
wherer,=2L/c is the round-trip time within the cavity and ” + )
the approximate equalities hold when the cavity mirror re- +i21 _wdwﬁwB”(w)B”(w)' ©

flectivities approach unity. These decay constants constitute
all the cavity losses, so we may write the overall cavity am- Under the independent atom approximation, the system
plitude decay rate as operatordi.e., those other than the reservoir operatotsey
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the standard equal-time commutation relations and multipli-

cation rules,[aq,a;,]zaqq,, SijSu=Si 6k, and[S;j,Sq]

=S 5J-k—Ska5i| , Where § denotes the Kronecker delta and
we note thaSkazskj . The reservoir operators obey the stan-

dard boson commutation relatiofi0].

IIl. QUANTUM LANGEVIN EQUATIONS

Following the work of Gardiner and Coll€i20], as well
as the later work of Poizat, Collett, and Walls8] and of
Ralph, Harb, and Bachdi], we now use the Heisenberg

equation of motion with the above Hamiltonian and commu-Single-photon detuning
tation relations to generate the quantum Langevin equations
for the system operators. In rotating coordinate frames, we

find that the Langevin equations for the slowly varying pump F2s=

and Stokes field operators are given by

ap=—(kptiAp)ay+0p 15515t V2 050

+ 2Kp,1aipn,1+ \/2Kp,Lai;?,|_a (10
as= — (Ks+i1A¢)as+ gs 25505+ V2 ks 000
+\2Kg 1201+ \2Kg AT, (12)

where Eq.(6) has been used arquwg— wq represents the
detuning of the driving optical frequency() from theqth
cold cavity resonanceaG). The superscriptn denotes an

input operator[26], p. 123.
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TABLE |. Parameters used to simplify the quantum Langevin
equations.

Parameter Symbol ValugHz)
Effective atom-field coupling qijl2m ~100-10°
Level 2 population decay Vo2 ~100-10°
Cavity amplitude decay Kol2m ~10°0-1¢°
Level 2 coherence decay Yol 271 ~100-10°
Level 3 coherence decay vail2m, yal2m  ~10°—10%
Single-photon Rabi frequencies Qg ;;/2m <10
Al27 ~101-10'°

VY32 Szo— S39) Byt \ ya1SLBIs+ Vy21B1) Sia
— VY2 S2BYy— B Sp9) + V¥ 2By B S
(17)

We also find that the population equations are given by
S1= ¥21S00+ ySaat (Up1pSiat H.C)+Fyy, (189

Soo= V35533 Y2152t (s 8L Spat H.C) +F o, (19

933: - Sll_ Szz-

where we used atom conservatid {+ S,,+ S;3=N, where
N is the number of moleculg¢go obtain Eq.(19), and the

(20

We obtain the Langevin equations for the atomic cohernoise terms are given by

ences in a similar fashion with the results

S1o= — (y21+i1A19) Sio+ 9;,1sap533+ gs,zsal313+ F12£ )
12

S;3= — (ya1+iA)Sya— Op.122p(S11— S33) — 95285810t F(l3 -)
13

'523= —(y32+i4)Sy5— 9:,2333(522_ Ss3)— 9]:;,13<5‘p541r2‘F ':(23 v)
14

whereA ;,=(w,— 1) — (wp,— wy) is the two-photon Raman
detuning, andA=(w3— 1) —w,~(w3—wy) —ws Is the
single-photon detuningsee Fig. L We have defined the
overall coherence decay constants a@lz(’yzfl—ill

+y220/2,  var=(yat vet yut vsd/2, and ys=(vs
+ Y31t Y21+ v33t ¥20)/2, and the noise terms are

F1o=+ Vy21(S11— S ilnz_ \ 731323Bi1n3_ 732'3;3513
— Vol SlZBilnl_ Bllan S12) + V2ol SlzBiznz_ Bg‘zT S12),
(15
F13=Vv31(S11— S33) Bilna+ v 7325125213_ ) 721523Bi1nz

— Vy12(S1BT— BIY S19) + Vyasl 5135213_ ng Si3),
(16)

F11=— V721(S] B1b+ B1Y S1p) — V yai( SI BT+ BYY 51?), )
21

Fao=— \ ¥3a 1B+ B Spa) + V y2u( SI B+ BYY 31%)- )
22

The following section is devoted to simplifying these quan-
tum Langevin equations.

IV. SIMPLIFIED QUANTUM LANGEVIN EQUATIONS

We now exploit the large single-photon detuning and the
moderate Rabi frequencies to significantly simplify the quan-
tum Langevin equations. For reference purposes, approxi-
mate values for the pertinent rates in this system are pro-
vided in Table I. The extreme single-photon detuning allows
us to make the following simplifications.

(1) Adiabatically eliminate the level 3 coherences. As
shown by Raymer, Mostowski, and Carlstgv], the 1-3
and 2—3 coherences can be adiabatically eliminated when the
single-photon detunings are much larger than the other rates
in the system. We can therefore solve for the “coarse-
grained” steady-state coherences from E@8) and(14) and
insert these into the remaining six equations.

(2) Disregard the single-photon absorption and mode pull-
ing. Terms arise in the two field operator equations that
represent linear absorptiorireal party and dispersion
(imaginary parts For near-resonance systemsvhen
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A=<1v34,73), the real portions can supply the population With these simplifications, the pertinent operator equa-
inversion necessary for traditional laser gain. In the presertions for this Raman system become
system, the real parts of these terms effectively broaden,

while the imaginary parts pull, the frequency of the cavity ép= — Kp@ptTigasSy+ \/Zvaoai'?’O
resonances due to single-photon interactions with the me- ) .

dium. In the limit A%x¢> y;i|gqi|%, the absorption terms +\2xp a0+ V2K a0 (24)
can be disregarded. The mode pulling is small and in practice

is nullified by active electronic stabilization of the cavity as=— kagtig* ap512+ ,/szyoa‘S’jo

length to the pump laser frequen@ye., we adjust the physi- ) )

cal cavity length to compensate for the refractive index +\/2Ks,1a'£1+ \/ZKS,La';L, (25
change. We also assume that the Stokes field will build on

the active cavity resonance line center. S1o= — Y2151+ ig*apa;rJr 2y, ilnz, (26)

(3) Ignore power broadening and Stark shifts. Terms arise
in the 1-2 coherence equation that are quadratic in the fielghhere
operators(linear in optical power, and linear in the coher-
ence. In direct analogy with simplificatiof2), these terms
cause power broadenirigeal part$ and Stark shiftgimagi- g
nary part$ of the two-photon1—-2) atomic transition. In the
limit AZyy> Vii|9q,ij_|2’ where (qjj=0q,j8q iS the Rabi 4N is the number of molecules. In obtaining E¢24)—
frequency for the optical field driving theij single-photon (26), we have renormalized the 1-2 coherence operator

atomic transition, the power broadening can be ignored. Th Sold Shew and we have defined the inout coherence
Stark shift is predicted to be very mild(l MHz) compared Eperator W) P

to the two-photon resonance widtpy,, for the optical pow-
ers considered, and can be compensated easily in practice by

9p,139§,23
=5 N, (27)

tuning the.pump'lase(wvith the cavity following. For elec- ianE Fio, (28)
tromagnetically induced transparen¢y?], and references V27y,1N

therein the Stark shift is much larger and plays a critical

role. where the noise terrR,, is given by Eq.(15). We have also

(4) Neglect spontaneous emission. In the limit of largeassumed that the two-photon Raman detuning and the cavity
single-photon detuning relative to the level 3 decay rate, weletunings are zero, which is easily achieved in practice. Note
can make the approximation§;+iA) " '~(iA) ! and like- that Eqs.(24)—(26) are decoupled from the populations.
wise for similar terms. Moreover, as one might expect from To more fully characterize these simplified Raman laser
the fluctuation-dissipation theoref@8], because the upper equations, we note that the nonvanishing second-order cor-
level decay can be neglected, the associated noise terms gglation functions of the input field operators are
tering from the 1-3 and 2—3 coherences are severely dimin-
ished by the single-photon detuning as well. In the above (agy(Dagi(t))y=(ag (Dapl(t))=8t—-t'), (29
limits, we therefore ignoré-,; and F,3 when compared to

the field and 1-2 coherence noise terms. (ally(valdt’)y=(aly(t)all(t))=st—t'), (30
(5) Ignore upper state population. One can show that the
fractional population of level 3 is on the order of (a (t)aln‘r (t"))=d8(t—t"), (3D

~|€p 13/ A|?, which is negligible for the large single-photon

detuning and moderate Rabi frequencies considered. Furth@fhere we have used the commutation relations
more, in the same limits, the level 2 population is on the[aln(t) a'”T(t )]=8(t—t'), and we have assumed that the
order of ~T'1,/ 7,1, where the level 2 Raman excitation rate mput fluctuatlons are ordinary vacuum, so tiaf"|— (0|

is and |a'”>—> |0).
To calculate the second-order correlation functions for the
2y 0, 10 3‘2 coherence input operator, we convert to the_lto calculus so
r125< = ) p.13775.2 , (23)  that the system operators commute with the input operators.
y§1+ Aiz A | This conversion is not essential and does not alter 24—
(26) or the behavior of the system, but it does simplify the
which is typically at least four orders of magnitude Smallermathematical treatment. Using the definitions given by Egs.
i = (15 and(28), and the fact that the input operators commute
than the population decay rate from level £(). In other  yith the system operators for the Ito calculus, we calculate
words, level 2 is populated at a much slower rate than it is
depopulated. This ensures that no coherent back conversion (sn )y =(SM(t)SM(t"))=0, (32)
of the generated Stokes ligkthrough the anti-Stokes pro-
cess$ will occur for this system. This also means we can
safely assume that all the population remains in the ground (S (t)S(t')) = 732 <533(t)>5(t t')~0, (33
state at all times.
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A : 1 _ gain is nearly the same for visible and near-infrared pump
( 'fz(t)STzT(t')):W[721<511(t)+533(t)>+ ¥3(Ss3(t))  lasers. This is afforded by the large detuning from any
v single-photon transitions in both the Raman and NDOPO
+ Y11 S1a(1) + Yol Sia(1)) 18t —t7) systems and allows for large frequency tuning ranges and
spectral coverages of the emitted ligBy].
— o~ o~ ) , The only formal difference between these systems lies in
*Fﬂ(nﬁ yut v (=) =81=-t"),  what has become the fundamental difference between para-
metric and stimulated processg35]; that is, the NDOPO
(34 must cope with phase matching difficulties, while the cw

. . Raman laser must deal with heat deposition. There are also
where we have used the fact that all the population remaiNgitterences on a more practical level that can cause their

in the ground state. Interestingly, the dearth of upper stat . . B )
population means that the 1-2 input coherence operaidr is E?hhear\fg)?zssg deviate from Eq&24)—(26) and from one an

correlated when the input fluctuations are vacuum, just like There also exist less direct connections between the cw

the field input operators. Raman laser and the standdimhsed on population inver-
sion laser. For instance, when the atomic variables can be

V. CONNECTION TO THE NDOPO eliminated, one can associate the population inversion of the
d normal laser with the intracavity pump photon number of the
r’J[}IDOPO and the Raman systems. Consequently, it is the
population inversion that is clamped above threshold in the
normal laser rather than the intracavity pump po{8ar7], p.
514).

In light of the similarities between the Raman and the

connection between the stimulated Raman and optical par iDOPO ¢ it i tural to think that It i
metric processes was actually established shortly after th% systems, 1tis natural 1o think that an atternative
orm of the Raman Hamiltonian, similar to that of the

discovery of both from conceptual and mathematical stand- . . :
points by other researchef80]. At that time, both of the NDOPO, may be valid. Indeed, such an alternative Hamil-

processes were only experimentally achievable in the puIse‘ifim'ahn d_oeT teX|stt andt cz?rlhslgmﬂcsntly S|mpI|Iy thquuantumf
laser regime, making precise experimental comparisons giffiechanical treatment ot thé cw Raman system. by way 0

ficult. Since then, cw NDOPOs have been experimentall)fiireCt analogy with the NDOPO, we obtain the two-photon

realized and have received a good deal of theoretical atter{Sston of the Raman system Hamiltonian

tion ([31], and references thergirBut not until recently has
the cw Raman process been so isolated from the complicat-
ing effects of the single-photon transitions. Indeed, the ex- —h(g* apalSIZ+ H.c), (36
perimental realization of the far-off-resonance cw Raman la-
ser now allows for detailed comparison with the cw wheregis given by Eq.27). To be clear, this system Hamil-
NDOPO. We find it fascinating that such a precise corretonian neglects all single-photon interactions, Stark shifts,
spondence resurfaces after a 35-year hiatus. and power broadening, and assumes all the population re-
The predicted steady-state behaviors of the two systemmains in the ground state. The decay and noise processes
are identical and have been experimentally verified. Theyassociated with level 3 are also implicitly ignored with this
exhibit pump clamping(power limiting behavior above system Hamiltonian. It describes only the effects of the two-
threshold 16], which was first identified theoretically for the photon Raman process. Note also that $ggoperator now
NDOPO by Siegmafi32]. Furthermore, the output modes of exhibits the bosonlike commutation relatig,,,S},]=1
both systems exhibit square root dependences on the inputhen the upper state population is negligible. With this and
pump power, and peak photon conversion efficiencies apncluding the noise and decay contributions, one can quickly
proaching 100% at four times threshold for single-endedierive Eqs(24)—(26), using the Heisenberg equation of mo-
cavities[33, and references thergin tion. Some authors have successfully applied Hamiltonians
All of the population for both systems effectively remain similar to Eq.(36), but with S, replaced by a phonon op-
in the ground state, and both systems exhibit phase insensérator, to the Raman systerfsee, for instance, RdfL]). The
tive amplification when only one output mode is observedRaman system derivation up to this point establishes the lim-
There is phase sensitivity hidden between the two outpuits of validity for such an approximate Hamiltonian.
modes for the NDOPO case and between the Stokes and 1-2
coherence for the Raman case. The phase relationship for V1. INTENSITY NOISE SPECTRA
both the Raman and NDOPO cases was noted by Giord-
maine[30], with the result We calculate the intensity noise spectra of the emitted
light in this section using the linearization procedure devel-
dp= st 1ot w2 (35 oped by Yamamot@38] and otherg39] and the input-output
formalism developed by Collet and Gardingt0]. These
for the Raman case. Both systems also exhibit the attractivieechniques have proven to be valuable tools for analyzing the
feature of frequency insensitive gain. In other words, thespectra of parametric systerf29,41,42 as well as the sys-

With the input operator correlation functions establishe
we can now draw a direct connection between the quantu
cw Raman laser equations defined by Es)—(26) and
those of the NDOP(@29] with the following associations:
pump—pump, Stokes-signal, 1-2 cohereneeidler. The

Heys=hwpata, +fimalastfiwysS)S:
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tems that explicitly involve atomic degrees of freedom h=r,—1 (42)
[3,5,19. P
We first adiabatically eliminate the 1-2 coherence from .
. . and the pump rate and threshold are defined b
Egs. (24)—(26) above because its decay rate is by far the pump y
fastest of those remaining and we are concerned only with

X . ! . inj2 2 2
the dynamics of the light. The two field operator equations _ |a';?| thi2_ KpKsTrt
rh=—p5 and |ap|’=——=—. (42
become |atp|2 GiTpo
o — T s in / in
ap=— Kpp~ G188yt 1V2G18sS1,1 V2Kp,08p 0 The qualitative steady-state behaviors given by Ed6)—
i i 42) are identical to those obtained by previous classical and
+ in 4 / n ( . R . :
20p 18,1 V2Kp L8 L &7 semiclassical method47,43, which accurately describe ex-
) . _ ot o perimental observations. Specifically, the intracavity pump
as= — k@st Grapapastiv2G1ap(Sy) '+ V2ks¢ds clamps above threshold and the semiclassical intracavity
~ : Stokes power grows as the square root of the pump rate. This
in in
+V2kg185 11 V2Ks Ag) (38) consistency with the previous results and experiments

i ) _ strengthens the validity of the present method.
whereG,=|g|*/ y;,. The forms of these equations are iden- " \ve note, however, that several factors prohiit from
tical to previou_s semiclqssipal results except for the additio'?epresenting a quantitatively accurate estimate of the Raman
of the input noise contributiorst3]. , ain. First, spatial aspects such as focusing of the pump and
We next perform an amplitude-phase expansion on thg,e siokes beams inside the cavity were not addressed. Sec-
operators using the relatiay=a4e ' %a and similarly for all  ond, many significant atom-photon interactions and the RWA
the input operators. Other authors note that such an expaiere neglected in this treatment for the sake of simplicity.
sion is valid when the photon number is much larger tharHowever, these omissions only modify the Raman daird
unity [38, and references thergirThe expansion decouples therefore the laser thresholguantitatively; they do not alter
the amplitude behaviors from those of the phases. This ithe qualitative behavior of the system. Furthermore, the
convenient because we are only interested in the amplitudemissions are rendered insignificant by the fact that, in prac-
behavior for the purposes of direct detection. Alternatively, aice, the Raman gain is obtained through empirical means.
field quadrature expansion can also be performed on EqSee Ref[17]to conneciG; to empirically based Raman gain
(37) and (38), which yields identical noise spectfag]. parameters and to include spatial considerations. The steady-
The two amplitude operator equations that result from thestate behavior given by Eq$40) and (41), as well as the
amplitude-phase expansion look identical to E@) and  noise spectra results that we will now derive do not depend

(38) except that the operators are all replaced by amplituden G, (they are all given in terms of the pump ragnd are
operators. We then make an explicit distinction between thenerefore quantitatively accurate.

semiclassical steady-state field amplitudes and the small am- By inserting Eq.(39) into the two amplitude operator
plitude fluctuations about these stable mean values for linequations we also generate the amplitude fluctuation equa-
earization purposes. Specifically, we define the amplitudgions. Here, we assume that the steady-state field amplitudes

fluctuation operatoba,(t) through the relation are very large compared to the associated fluctuations so that
second-order fluctuation terms can be neglected. As a result,
g(t):|a |+15§(t) (39) the time-dependent equations for the fluctuation operators
q ql ™ 29dq\t), oo N . . .
(signified byd's) are linear and can be written in the compact

where |ag|=(a,) represents the real-valued steady-statd®™
semiclassical field amplitude for large photon number and q
the factor of 1/2 is included for later mathematical conve- ¢ _ in in in
nience. The input fluctuation operators are represented in a dtéa(t)_ Ada(t) +BaS (1) + Coag(t) +Day(t)
manner analogous to E(9). However, only the input pump

operator has a nonzero mean deterministic value. All the +Eda(1), (43
other input operators represent purely stochastic noise and
fluctuate about zero mean values. where it is understood that all the fluctuation operators are

The operator definitions given by E@9) can be inserted functions of time and the following vectors and matrices
into the two amplitude operator equations. This generates thieave been defined
relations for both the semiclassical steady-state amplitudes

and the amplitude fluctuations. For the steady-state semiclas- Sa. 1
. ' . p _
sical behavior above threshold, we obtain sa=| |, o&S"=690 |, (44)
dag 1
= Ve and lad=\mf, o
apl=\/~= an ag|=\/ =~ i i
P Gy ° Gy [ dayy [ dayy
dag= —n | say'= —n | (45)
for the intracavity field amplitudes where das oag
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san where the operators in the Fourier space are denoted with
san= P (46)  tilde’s and are defined by
dag L
sa(w)=—==| dtsa(t)e'", 53
[ Kp+Galaf? 2el|ap||as|) (@)= 5] dtoat ®3
S _ 2
2Gy|apl|ad x5 Gyl ary| and similarly for the input operators.
(1+h)«x 2Nk ke To transform the set of intracavity equations given by Eq.
= P P s), 47 (52) to fluctuation equations outside the back of the cavity,
—2\hkpks 0 we use the cavity boundary conditiof0]
( ~\2Gy|ay 0 ) 523" w) = Déa(w) - daf (), (54)
- 0 V2G| arp| where the vectopal"is composed of output fluctuation op-
. erators outside the back mirr@enoted by subscript)1in-
=diag — V2h«p,v2xp), (48 serting Eq.(52) into Eq. (54) yields
C=diag v2kp0\2xs0), (49 68" (w)=D(iw+A) 'BsS"(w)+D(iw+A) 1Céal(w)
D=diag(\2xp1,\2ks1), (50) +[Diw+A) D= 1]da(w)
E=diag v2r, 1, \2rer). (51) +D(iw+A) 'Eda" (), (55)

Note that we have used the relations given by E4g) and  Wherel is the identity matrix.

(41) The output intensity noise spectra relative to the standard

In order to generate noise spectra, we take the Fourie(i]uantum _I|m|Eu are glVS(?u by thﬁu dlagTonaI el_ements of
transform of Eq(43) and solve for the intracavity field fluc- he matrix V (w)=(sa"(w)[ 6a™(w)]"). Taking the

tuations(in the frequency domajrto give input noise to be vacuuni(5Siy(w)[6Siy(w)]")=1, for
examplg in all cases but the front pump input noise
sa(w)=(io+A) [B6S(w)+Cday(w) [(ap |(w)[ say (@) ") =V(w) for this casé we obtain
~ ~ the following analytical expressions for the emitted relative
+Déay(w)+Edsa(w)], (52 stokes noise:

8K 1w+ ZKPKP’Oh[Vipn’O(w) —-1]+ Kg(l— h?)}

Mw)=1 + (56)
. 0 [ K2(1+h)2— Brprch]w? + 1612k2h2
and the transmitted pump noise
Arc, oicy [ VI w)—1]w%+ 32k, kp 1k2h
ngjlt(a))=l+ p,0 Pvl[ p,O( ] pKp,1Ks 57

w4+[K|23(1+ h)2— 8KpK5h]w2+ 16K'23K§h2

out the back of the cavity. By performing the same steps, but solving for the spectra emitted from the front mirror, we obtain

AV o @) = L1 k5 o= Kpp ol 1+h) Jw?+ 32,k 03N
o+ [K§(1+ h)2— 8KpKSh]a)2+ 16K’2)K§h2

Vo (@)= V(@) + : (58)

for the reflected pump spectra. The Stokes spectra emitted from the front mirror is identical(8®)Bgjith «g;— «so. The
steady-state expressions given by Hd€)—(42) and the noise spectra given by E¢86)—(58) are the primary mathematical
results derived in this work.

VII. ANALYSIS show the predicted noise spectra at four times threshold (
=1) from Eqgs.(56) and(57) as solid lines. The dotted lines
We first compare the predictions of Eq&6) and (57) are the predictions from Ref43]. All the curves are normal-
with the semiclassical numerical technique described in Refized to the standard quantum lingBQL).
[43]. Using the parameters from that reference, Figs. 2 and 3 Two sets of curves are provided in both figures. The upper
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I Vg’ult(w)ZVgl’J{(w)=1 (0> Kp,Ks), (59
Z out, __\yin
.ﬂg’ Voo @)=Vpo@) (0>kKp, ks, (60
E for all pump rates. This indicates that the input pump fluc-
S tuations simply bounce off the input coupler when they are
g well above the cavity linewidths. This leaves only the re-
g ! .. flected vacuum fluctuations for the Stokes and the transmit-
O 40 e I ted pump output fluctuations in this limit.

10* 10° 10°

The lower frequency limit is more interesting. For fre-
quencies well below the cavity linewidths, E&6) becomes

FIG. 2. Plot of the Stokes intensity noise relative to the SQL as
a function of the Fourier frequency. The solid curves represent the | ou _a, T Ksa Kp,0-\ in _ h2
predictions from Eq(56), while the dotted curves represent those of Sylt(w)_ 1+ 2h2 Ks 2h Kp [VP'O(U)) 1]1+1-h
Ref.[43]. The upper set of curves shows the noise spectra for a flat
input pump noise 1000 times the SQL, while the lower set shows

Relative Frequency [o/(xx,)""]

that for an input pump of 10 times the SQL. Discrepancies between (o< Kpo Ks)- (61)
the two theories are observed when the noise is near or below th'?h' . . hresh 1 it th
SQL, as expected. is system is very noisy near thresholi<€1), a trait that

it shares with other laser systems. For very high pump rates
. . h>1), on the other hand, the output Stokes noise ap-

sets show the responses for input pump noise levels of 10Q}oaches -« ,/2x5. This indicates that noise fluctuations
times the SQL, while the lower sets show those forpeqy the SQL are possible at high pump rates. The noise

pol@)=10. As expected, the two theories closely agree foligye| approaches a lower limit of 50% below the SQL when
large noise levels, but deviate for low noise levels near Ol 1=ks (i.€., in the absence of the Stokes mirror absorp-

below the SQL. This is simply because the treatment giveRjgn).
in Ref. [43] does not include quantum noise contributions, At a pump rate of four times the threshold value<(1,
while the present treatment does. We emphasize that thep:4)’ the low-frequency Stokes noise simplifies to
noise predictions of Refl43], and therefore those of the
present work, accurately describe experimental data for noise Ke1Kpo. . -
levels far above the SQL. Noise levels approaching the SQL vg“;(w) =1+ —=F [V';,o(w)_ 1]
have not yet been experimentally investigated. Kskp
We also point out that Eq56) exactly matchegin the
appropriate limity Eq. (3.18 from Ref.[29], which was ob- (0<kp,xs and h=1). (62
tained through a field quadrature expansion for the NDOPO. _ ) _
To confirm this, note the followingh=s?, K= Yol2: Vi From this result we see that forasmgle—ended lossless cavity
> s,7p, and the annoying factors of 4 are avoided in the(Ks= kspandxp=rp ), the system displays perfect photon
present treatment with the factor of one-half in Eg9). statistics transfer from the input pump to the output Stokes
Referencd29] also demonstrates that it is possiltend in-  [OF @ Pump rate of four times thre;h%Ld and f?nr frequencies
formative to decompose the output noise spectra into theif€loW the cavity linewidths, that i8/¢1(w) =Vpo(w) for
constituent noise contributions. this ideal case. This is the AC analog to the 100% photon
Several limiting cases can yield insight into the pmlsicscqnversi.on efficiency that is possible in the steady—state for
embedded within Eqs(56)—(58). In the high-frequency this particular pump ratg 33], and references thergin

limit, the output spectra become Also in the low-frequency limit, Eqs(57) and (58) be-
come
I 2k
SE10? Vo(w)=1+ Hkil (0<Kp,Ke) (63)
= 7 P
L 1
2 10 and
[«
E 10°
o out in 2 Kp,0
E 10" I | Vpol@)=Vpo(w)+ n K_p (0<Kp,Ks). (64)
B e
§107 s T The transmitted pump noise given by E§3) does not de-
E 10 10 10 ; ; )
Relative Frequency [o/(xx,)"] pend on the input pump noise. This is the AC analog to the

pump clamping that is observed in the steady-state above
FIG. 3. Same as Fig. 2 except plotting the transmitted pumghreshold. The first terrti.e., the 3 in Eq. (63) represents the
noise[Eq. (57)] instead of the output Stokes noise. vacuum fluctuations that are reflected off of mirror 1. The
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FIG. 4. Plot of the Stokes intensity noise relative to the SQL as FIG. 5. The Stokes intensity noise relative to the SQL as a
a function of pump rate for frequencies well below the cavity line- function of normalized Fourier frequency for several different ratios
widths. Curves for several different values of the input pump inten-of the cavity decay rates«/«,) and for a pump rate of four times
sity noise are shown. The system exhibits perfect photon statistichireshold. Decreasing the cavity decay rate of the Stokes relative to
transfer from pump to Stokes at four times threshold and the intenthat of the pump suppresses the relaxation oscillations.
sity noise approaches 50% below the SQL in the limit of large
pump rate. creasing noise peak in the figure. In general, decreasing the

cavity decay rate rati@i.e., making the Stokes cavity finesse

second term represents the noise transmitted through th@geater than that of the pumpsuppresses these relaxation
mirror from the circulating pump. Similarly, the reflected oscillations. This is consistent with previous findings in the
pump noise given by Eq64) is composed of the reflected time domain[44].
portion of the input pump noisghe first term and the trans- The relaxation oscillation behavior is also dependent on
mitted portion of the circulating pump noisghe second the pump rate. This is illustrated in Fig 6. The figure shows
term). In both cases, larger pump ratéargerh) result in ~ the normalized intensity noise as a function of the Fourier
smaller contributions from the circulating pump fluctuations.frequency for the symmetric case whep=«s and for an
The equations predict that neither of these fluctuations caiput pump noise of ten times the SQL. Several curves are
dip below the SQL when the input fluctuations are classicalprovided corresponding to different pump rates. The relax-

For clarity, we now confine the analysis to the Stokesation oscillations are diminished and pushed to higher fre-
output from a single-ended lossless caviig€ «s; and «,, quencies as the pump rate is increased. Also note that
=) Figure 4 illustrates the pump rate behavior of the[Ve"{(@)=V{(w)] for the four-times-threshold curve at low
intensity noise for the Fourier frequencies below the cavityfrequencies. In general, increasing the pump rate yields
linewidths (w<«,,«s) and for several different input pump broadband noise suppression.
noise levels. A coherent state input pump noise corresponds Figure 4 implies that with a sufficiently quiet pump
to Vy'(w)=1. As predicted by Eq(61), the Stokes intensity source, and for a sufficiently high pump rate, intensity
noise is well above the SQL near threshol~0, r,~1) squeezing can be observed. However, this is only true for the
for all curves, but is equal to the input pump noise Fourier frequencies below the cavity linewidths. Unfortu-
[Vgut(w):\/i;(w)] at four times thresholdh=1, r ,=4) for nately, the desire for large cavity linewidths directly com-

all curves. A vertical dotted line at,=4 is provided to em- P€tes with the desire for large pump rates because an in-
phasize this point. crease in the cavity bandwidths necessarily results in an

Also as predicted, the output intensity noise can drop belcrease in the threshold. This is a common dilemma found

low the SQL[ V2"{(w) = 1] for higher pump rates and asymp-
totically approache¥2"{w)=1/2 in the limit of large pump
rate (,>1) even when the input pump noise is greater than
the SQL. A horizontal dotted line 83" w) = 1/2 is provided

in Fig. 4 to emphasize this point.

The behavior between the extremely low and extremely
high-frequency limits depends critically on the ratio of the
two cavity decay rates. Figures 5 and 6 help illustrate the
issues involved. Figure 5 shows the Stokes intensity noise as
a function of Fourier frequency for a pump rate of four times o ‘
threshold h=1, rp=4?n and an input pump noise ten times 0'0R1e|ati\?é1Frequ;ncy [m}(g . ),,1100
greater than the SQLV;(w) =10]. Several curves are given s
corresponding to several different values of the cavity decay g 6. The Stokes intensity noise relative to the SQL as a
rate ratio (cs/«p). The Fourier frequency on the horizontal fynction of normalized Fourier frequency for several different pump
axis is given relative ta/k,« to maintain a constant thresh- rates, equal cavity decay rateg € «,) and for an input pump
old for all curves. As the decay rate ratio increases, relaxnoise ofVy(w)=10. Increasing the pump rate suppresses the re-
ation oscillations become undamped as evidenced by the inaxation oscillations and pushes them to higher frequencies.

-
(=
o

-
o

Ao rP=25 AN
rP—16§ : .

-

-

Output Stokes Noise (V™)
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in many other nonlinear optical systems and poses a signifiimits. We also showed that perfect photon statistics transfer
cant obstacle to experimentally generating intensity noisérom the pump to the Stokes can occur for low Fourier fre-

levels below the SQL for this system. quencies when a single-ended lossless cavity is pumped at
four times threshold. For higher pump rates, we predict that
VIII. SUMMARY this system can exhibit 50% noise reduction below the SQL

. within the cavity bandwidths. In order to suppress relaxation

In this work, we presented the quantum theory of thepscillations in the system, we showed that the most favorable
far-off-resonance cw_Raman laser using the Heisenbergsperational conditions were high pump ratgs 1) and low
Langevin approach. The large single-photon detuning andatio of cavity decay ratesc<rp). In other words, the

moderate Rabi frequencies present in the system providegyity finesse for the Stokes should be greater than that of

the means for significant simplification of the quantumipe pump and the threshold should be as low as possible.
Langevin equations. These simplifications enabled us to es-

tablish a strong connection between this cw Raman system
and the cw NDOPO.

We linearized the simplified quantum Langevin equations This paper is based upon work supported by the National
in order to generate analytical expressions for the outpuScience Foundation under Grant No. 0097222. P. A. Roos
noise spectra from this laser system. We showed that both thgratefully acknowledges the Australian-American Fulbright
steady-state and the time-dependent results were consisteabdbmmission and the University of Queensland for the oppor-
with previous semiclassical treatments in the appropriatéunity and generous support for this work.
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