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Quantum theory of the far-off-resonance continuous-wave Raman laser:
Heisenberg-Langevin approach
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We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-
Langevin approach. We show that the simplified quantum Langevin equations for this system are mathemati-
cally identical to those of the nondegenerate optical parametric oscillator in the time domain with the following
associations: pump↔ pump, Stokes↔ signal, and Raman coherence↔ idler. We derive analytical results for
both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In
the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent
agreement with experimental observations. The analytical time-dependent results predict perfect photon statis-
tics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.
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I. INTRODUCTION AND MOTIVATION

There has been a significant amount of theoretical w
addressing the quantum mechanical nature of pulsed Ra
laser systems~@1#, and references therein!, but little attention
was devoted to the continuous-wave~cw! regime until the
late 1980s and the 1990s. At that time, three-level ato
interacting with quantized field modes were analyzed in
process of identifying and characterizing nonclassi
sources of light. For such atoms in theL-configuration,
many competing processes can contribute to the overall
namics of the system. These processes include optical b
bility @2#, traditional population-based lasing@3#, lasing with-
out inversion @4–6#, and electromagnetically induce
transparency@7# in addition to two-photon Raman lasin
@8–11#. More general treatments of three level systems h
also been performed, which can accommodate many of th
processes@12–15#.

The present treatment is motivated by the experime
realization of far-off-resonance cw Raman lasers in diato
hydrogen gas using high-finesse cavity enhancement of
the pump and the Stokes fields@16#. The hydrogen molecule
can be modeled as three-levelL systems. The primary fea
tures that make this system unique are~1! the optical fre-
quencies involved are extraordinarily far off resonance fr
any single-photon atomic transitions~hence the need fo
high-finesse cavity enhancement! and ~2! the nonradiative
decay of the final Raman level is very fast compared to
Raman excitation rate of this level. The fundamental diff
ence between this cavity-enhanced cw Raman work and
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past-pulsed Raman work lies in the fact that pulsed Ram
systems typically do not include a laser oscillator. Inste
the pulsed systems are most often pumped longitudin
through long cells filled with the Raman gas, sometimes w
multiple ~nonoverlapping! passes. The emission from the
pulsed Raman systems might therefore be more accura
classified as amplified spontaneous emission, rather tha
ser emission. For this reason, the theoretical methods
limits that we employ to treat our well-established las
mode are often very different from those used to treat pul
Raman systems. Many of the fine details that are omit
from the present work for the sake of brevity can be found
Chapter 3 of Ref.@17#.

In a closely related work, Rebic and co-workers@11# ex-
amine a similar system, but focus on the case where no de
path from the final Raman state to the ground state is pre
to close the pump cycle. In their analysis, the final Ram
state population returns to the ground state via coheren
teractions with the cavity field modes~anti-Stokes genera
tion!. Decay of the final Raman state population is critical
the results presented in this work. In another related wo
Poizat, Collett, and Walls@18# examine two field modes in
teracting with a collection of three-level atoms in ladder
cascade configurations. Olsen, Gheri, and Walls@19# note
that this system can exhibit similar behavior to the cor
spondingL-configuration in certain circumstances.

As an alternative to the Heisenberg-Langevin appro
provided in the present work, one can also restrict the g
eral treatment of Eschmann and Balbagh@15# or others@12–
14# to the appropriate limits and address the system in
Schrödinger picture. We prefer the Heisenberg picture for t
present work because it lends itself more directly to the st
of noise spectra and perhaps to the development of phys
understanding.

After this introduction, we use Sec. II to assemble t

h-
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appropriate components of the total Hamiltonian. We th
generate the quantum Langevin equations for the system
erators in Sec. III following the work of Gardiner and Colle
@20#. In Sec. IV, we exploit the large single-photon detuni
to simplify the equations of motion significantly. In Sec.
we draw a direct connection between the far-off-resona
cw Raman system and the cw nondegenerate optical p
metric oscillator~NDOPO!. In Sec. VI, we linearize the sim
plified quantum Langevin equations and solve for the no
spectra of the emitted pump and the Stokes light analytica
In Sec. VII, we compare our analytical results to numeri
results of a previous semiclassical treatment and we
several useful limits of the equations in order to solidify t
understanding of the underlying physics. We review our fin
ings and provide some concluding thoughts in the final s
tion.

II. HAMILTONIAN

In the interest of retaining as much clarity as possible,
make several initial simplifications. We focus on the temp
ral aspects of the system in this work. The effects of negle
ing the spatial aspects are superficial and will be discusse
the text. We neglect thermal population of the upper sta
because the states differ substantially in energy from
ground state. The generation of all anti-Stokes orders
Stokes orders higher than the first are neglected in
present treatment because these fields are not enha
within the cavity. The effect of cavity enhancing the fir
anti-Stokes order yields interesting results and is treated e
where@21#. We neglect the complicating effects of heat ge
eration, which have been observed experimentally for
systems that generate large Stokes powers@22,23#.

We approximate the hydrogen molecules as three-leveL
systems and we allow them to interact with two quantiz
high-finesse cavity modes, as shown in Fig. 1. For the p
vibrational cw Raman lasers that have been experimen
demonstrated in diatomic hydrogen, the most probable t
sition at room temperature isQ01(1) with a shift of
4155 cm21. For this case, level 1 is the ground statev
50, J51), level 2 is the first excited vibrational state (v
51, J51), and level 3 is the first excited electronic sta
which is spaced 91 689 cm21 from the ground state. Othe
Raman transitions@Q01(0), for instance# are ignored be-

FIG. 1. To-scale energy level diagram for the diatomic hydrog
molecule showing the pertinent levels and the far-off-resona
fields.
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cause the thermal distributions of population for the lev
involved are much smaller and their Raman shifts differ s
nificantly ~much more than the Raman linewidth! from that
of Q01(1). Although we focus on the vibrational transition
the model presented in this work is also valid for the pur
rotational cw Raman lasers that have been realized@24#. Fig-
ure 1 shows the energy-level spacings and the optical
quencies to-scale in order to emphasize the large sin
photon detuning (D in the figure! present. This detuning
(;1016 Hz) is by far the largest rate in the system~including
Rabi frequencies! for the optical powers considered. Afte
Sec. III we will assume that the two-photon 1–2 transition
resonant, which is easily achieved experimentally. Sing
photon 1–2 transitions and all other single-photon transiti
within the ground-state manifold are forbidden by select
rules for this homonuclear molecule. Decays of all the po
lations and coherences are allowed. Detunings are re
sented byD ’s, population decay rates byḡ ’s ~denoted by the
bar! and collisional dephasing rates byg̃ ’s ~with tildes, not
shown in the figure!. In this way, for instance,ḡ21 represents
the population decay rate from level 2 to level 1. Similar
g̃22 will contribute to decay of the coherences that invol
level 2.

As Fig. 1 suggests, we invoke the rotating wave appro
mation ~RWA! here to simplify the calculation despite th
fact that it is not valid for the large single-photon detuni
present. We perform a similar invalid simplification by on
considering pump photon interactions with the 1–3 atom
transition and the Stokes photon interactions with the 2
atomic transition. In reality, additional upper states and ot
similar atom-photon interactions exist in this system. Ho
ever, Ref.@17# shows that none of these simplifications a
fects the qualitative behavior of the system; they only ca
quantitative modifications to the Raman gain. In practi
this gain is determined from an empirically based parame
Furthermore, the noise spectra results that we derive do
depend on the Raman gain and are therefore unaffecte
these simplifications.

The hydrogen molecules occupy the space between
mirrors of a linear high-finesse cavity. The results given
this work can be easily adapted to other cavity geometr
The incident pump light is actively frequency stabilized to
resonance of the cavity. The front mirror~denoted ‘‘0’’
throughout this work! serves as the input coupler for th
pump light, while the back mirror~denoted ‘‘1’’! is eventu-
ally treated as the output coupler for the Stokes. The to
Hamiltonian describing the atoms, the fields, the baths~for
decay and noise purposes!, and their mutual interactions is

H5H11H21H31H41H51Hbaths, ~1!

where the components ofH are given in the following para-
graphs.

H1 represents the free energy of the atoms and field
the absence of any interactions and is given by

H15(
i 51

3

\v iSii 1 (
q5p,s

\vq
caq

†aq , ~2!

n
e
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QUANTUM THEORY OF THE FAR-OFF-RESONANCE . . . PHYSICAL REVIEW A 68, 013802 ~2003!
where\v i andSii are the energy and collective populatio
operator for thei th atomic state, respectively. Througho
this work, the subscriptp refers to the pump ands refers to
the Stokes, whileq is a general index referring to either. I
this way, the operatorsaq andaq

† refer to the annihilation and
creation of the pump (q5p) and the Stokes (q5s) photons,
respectively, whilevp

c and vs
c are the frequencies of th

empty cavity modes nearest to the pump and the Stokes
tical frequencies, respectively.

H2 represents the reversible interaction energy associ
with atom-field couplings in the electric dipole and rotati
wave approximations and is given by

H25 i\~gp,13ap
†S132H.c.!1 i\~gs,23as

†S232H.c.!, ~3!

where the collective coherence operator between levelsi and
j is given bySi j andgq,i j represents the atom-field couplin
constant for the field modeq driving the i – j atomic transi-
tion. We emphasize again here that only the pump inte
tions with the 1–3 transition and the Stokes interactions w
the 2–3 transition are considered. Additional terms~that do
not affect the results of this work! arise in Eq.~3! when the
RWA is not invoked and when other atom-photon intera
tions are included@17#.

H3 represents the coupling between the two active ca
modes and the external field baths for decay and noise
poses and is given by

H35 i\ (
q5p,s

E
2`

`

dvHAkq,0

p
@bq,0

† ~v!aq2aq
†bq,0~v!#

1Akq,1

p
@bq,1

† ~v!aq2aq
†bq,1~v!#

1Akq,L

p
@bq,L

† ~v!aq2aq
†bq,L~v!#J , ~4!

where the external field bath operatorsbq,0 and bq,0
† are

coupled to theqth internal cavity mode through the couplin
constantkq,0 . Physically, this constant represents the cav
amplitude decay rate due to transmission through the f
~input coupler! mirror ~signified by the subscript 0). Simi
larly, subscripts 1 andL signify that the coupling constant
kq,1 and kq,L represent the cavity decays due to the ba
mirror transmission and absorption losses within the cav
respectively. We couple the external field bath operatorsbq,1

andbq,1
† as well asbq,L andbq,L

† to theqth internal mode to
model these cavity losses. The cavity decay rates are re
to the mirror transmissivities (T’s! and absorptions (A’s!
through

kq,0'Tq,0/2t rt , kq,1'Tq,1/2t rt , kq,L'Aq/2t rt , ~5!

wheret rt52L/c is the round-trip time within the cavity an
the approximate equalities hold when the cavity mirror
flectivities approach unity. These decay constants const
all the cavity losses, so we may write the overall cavity a
plitude decay rate as
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In Eq. ~4! we assume that the cavity decay rates, and the
fore the mirror transmissivities and absorptions, are cons
over large frequency bandwidths compared to the ca
resonance widths~the k ’s do not depend onv). This is the
first Markoff approximation and is easily achieved in pra
tice for this system. We also employ this approximation
H4 andH5.

H4 represents the coupling between atomic coheren
and atomic bath operators to generate damping and nois
the atoms and is given by

H45 i\E
2`

`

dvHAḡ21

2p
@B12

† ~v!S122S12
† B12~v!#

1Aḡ31

2p
@B13

† ~v!S132S13
† B13~v!#

1Aḡ32

2p
@B23

† ~v!S232S23
† B23~v!#J , ~7!

where the decay rates of the state populations, given by
ḡ j i ’s, can be interpreted as coupling constants between
atomic system operators and the atomic bath operat
which are given byBi j and Bi j

† . The decays of population
downward from level 3 and downward from level 2 are d
to spontaneous emission, and inelastic molecular collisio
respectively.

Similarly, H5 represents the coupling between atom
populations and atomic bath operators to generate decay
noise of the atomic coherences through dephasing an
given by

H55 i\(
i 51

3 E
2`

`

dvA g̃ i i

2p
@Bii

† ~v!Sii 2Sii Bii ~v!#, ~8!

where theg̃ i i ’s are the dephasing rates associated with e
level due to elastic molecular collisions, whileBii

† andBii are
the corresponding atomic bath operators. We model this
teraction after Gardiner and Zoller@25# and Eschmann and
Ballagh @15#.

Hbaths represents the free energy of the external bath
reservoir modes and is given by

Hbaths5 (
q5p,s

E
2`

`

dv\v@bq,0
† ~v!bq,0~v!1bq,1

† ~v!bq,1~v!

1bq,L
† ~v!bq,L~v!#1E

2`

`

dv\v@B12
† ~v!B12~v!

1B13
† ~v!B13~v!1B23

† ~v!B23~v!#

1(
i 51

3 E
2`

`

dv\vBii
† ~v!Bii ~v!. ~9!

Under the independent atom approximation, the sys
operators~i.e., those other than the reservoir operators! obey
2-3
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the standard equal-time commutation relations and multi
cation rules,@aq ,aq8

†
#5dqq8 , Si j Skl5Sil d jk , and @Si j ,Skl#

5Sil d jk2Sjk
† d i l , whered denotes the Kronecker delta an

we note thatSjk
† 5Sk j . The reservoir operators obey the sta

dard boson commutation relations@20#.

III. QUANTUM LANGEVIN EQUATIONS

Following the work of Gardiner and Collett@20#, as well
as the later work of Poizat, Collett, and Walls@18# and of
Ralph, Harb, and Bachor@3#, we now use the Heisenber
equation of motion with the above Hamiltonian and comm
tation relations to generate the quantum Langevin equat
for the system operators. In rotating coordinate frames,
find that the Langevin equations for the slowly varying pum
and Stokes field operators are given by

ȧp52~kp1 iDp!ap1gp,13S131A2kp,0ap,0
in

1A2kp,1ap,1
in 1A2kp,Lap,L

in , ~10!

ȧs52~ks1 iDs!as1gs,23S231A2ks,0as,0
in

1A2ks,1as,1
in 1A2ks,Las,L

in , ~11!

where Eq.~6! has been used andDq[vq
c2vq represents the

detuning of the driving optical frequency (vq) from theqth
cold cavity resonance (vq

c). The superscriptin denotes an
input operator~@26#, p. 123!.

We obtain the Langevin equations for the atomic coh
ences in a similar fashion with the results

Ṡ1252~g211 iD12!S121gp,13* apS23
† 1gs,23as

†S131F12,
~12!

Ṡ1352~g311 iD!S132gp,13* ap~S112S33!2gs,23* asS121F13,
~13!

Ṡ2352~g321 iD!S232gs,23* as~S222S33!2gp,13* apS12
† 1F23,

~14!

whereD12[(v22v1)2(vp2vs) is the two-photon Raman
detuning, andD[(v32v1)2vp'(v32v2)2vs is the
single-photon detuning~see Fig. 1!. We have defined the
overall coherence decay constants asg21[(ḡ211g̃11

1g̃22)/2, g31[(ḡ311ḡ321g̃111g̃33)/2, and g32[(ḡ32

1ḡ311ḡ211g̃331g̃22)/2, and the noise terms are

F12[1Aḡ21~S112S22!B12
in 2Aḡ31S23

† B13
in 2Aḡ32B23

† S13

2Ag̃11~S12B11
in 2B11

in†S12!1Ag̃22~S12B22
in 2B22

in†S12!,

~15!

F13[Aḡ31~S112S33!B13
in 1Aḡ32S12B23

in 2Aḡ21S23B12
in

2Ag̃11~S13B11
in 2B11

in†S13!1Ag̃33~S13B33
in 2B33

in†S13!,

~16!
01380
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F23[Aḡ32~S222S33!B23
in 1Aḡ31S12

† B13
in 1Aḡ21B12

in†S13

2Ag̃22~S23B22
in 2B22

in†S23!1Ag̃33~S23B33
in 2B33

in†S23!.

~17!

We also find that the population equations are given by

Ṡ115ḡ21S221ḡ31S331~gp,13ap
†S131H.c.!1F11, ~18!

Ṡ225ḡ32S332ḡ21S221~gs,23as
†S231H.c.!1F22, ~19!

Ṡ3352Ṡ112Ṡ22, ~20!

where we used atom conservation (S111S221S335N, where
N is the number of molecules! to obtain Eq.~19!, and the
noise terms are given by

F11[2Aḡ21~S12
† B12

in 1B12
in†S12!2Aḡ31~S13

† B13
in 1B13

in†S13!,
~21!

F22[2Aḡ32~S23
† B23

in 1B23
in†S23!1Aḡ21~S12

† B12
in 1B12

in†S12!.
~22!

The following section is devoted to simplifying these qua
tum Langevin equations.

IV. SIMPLIFIED QUANTUM LANGEVIN EQUATIONS

We now exploit the large single-photon detuning and
moderate Rabi frequencies to significantly simplify the qua
tum Langevin equations. For reference purposes, appr
mate values for the pertinent rates in this system are p
vided in Table I. The extreme single-photon detuning allo
us to make the following simplifications.

~1! Adiabatically eliminate the level 3 coherences. A
shown by Raymer, Mostowski, and Carlsten@27#, the 1–3
and 2–3 coherences can be adiabatically eliminated when
single-photon detunings are much larger than the other r
in the system. We can therefore solve for the ‘‘coars
grained’’ steady-state coherences from Eqs.~13! and~14! and
insert these into the remaining six equations.

~2! Disregard the single-photon absorption and mode p
ing. Terms arise in the two field operator equations t
represent linear absorption~real parts! and dispersion
~imaginary parts!. For near-resonance systems~when

TABLE I. Parameters used to simplify the quantum Langev
equations.

Parameter Symbol Value~Hz!

Effective atom-field coupling gq,i j /2p ;1042105

Level 2 population decay ḡ21/2p ;1042105

Cavity amplitude decay kq/2p ;1052106

Level 2 coherence decay g21/2p ;1082109

Level 3 coherence decay g31/2p, g32/2p ;10921010

Single-photon Rabi frequencies Vq,i j /2p &1010

Single-photon detuning D/2p ;101521016
2-4
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D&g31,g32), the real portions can supply the populatio
inversion necessary for traditional laser gain. In the pres
system, the real parts of these terms effectively broad
while the imaginary parts pull, the frequency of the cav
resonances due to single-photon interactions with the
dium. In the limit D2kq@g j i ugq,i j u2, the absorption terms
can be disregarded. The mode pulling is small and in prac
is nullified by active electronic stabilization of the cavi
length to the pump laser frequency~i.e., we adjust the physi
cal cavity length to compensate for the refractive ind
change!. We also assume that the Stokes field will build
the activecavity resonance line center.

~3! Ignore power broadening and Stark shifts. Terms a
in the 1–2 coherence equation that are quadratic in the
operators~linear in optical power!, and linear in the coher
ence. In direct analogy with simplification~2!, these terms
cause power broadening~real parts! and Stark shifts~imagi-
nary parts! of the two-photon~1–2! atomic transition. In the
limit D2g21@g i j uVq,i j u2, where Vq,i j [gq,i j aq is the Rabi
frequency for the optical fieldq driving the i j single-photon
atomic transition, the power broadening can be ignored.
Stark shift is predicted to be very mild (,1 MHz) compared
to the two-photon resonance width,g21, for the optical pow-
ers considered, and can be compensated easily in practic
tuning the pump laser~with the cavity following!. For elec-
tromagnetically induced transparency~@7#, and references
therein! the Stark shift is much larger and plays a critic
role.

~4! Neglect spontaneous emission. In the limit of lar
single-photon detuning relative to the level 3 decay rate,
can make the approximation (g311 iD)21'( iD)21 and like-
wise for similar terms. Moreover, as one might expect fro
the fluctuation-dissipation theorem@28#, because the uppe
level decay can be neglected, the associated noise term
tering from the 1–3 and 2–3 coherences are severely dim
ished by the single-photon detuning as well. In the abo
limits, we therefore ignoreF13 and F23 when compared to
the field and 1–2 coherence noise terms.

~5! Ignore upper state population. One can show that
fractional population of level 3 is on the order o
;uVp,13/Du2, which is negligible for the large single-photo
detuning and moderate Rabi frequencies considered. Fur
more, in the same limits, the level 2 population is on t
order of;G12/ḡ21, where the level 2 Raman excitation ra
is

G12[S 2g21

g21
2 1D12

2 D UVp,13Vs,23

D U2

, ~23!

which is typically at least four orders of magnitude smal
than the population decay rate from level 2 (ḡ21). In other
words, level 2 is populated at a much slower rate than i
depopulated. This ensures that no coherent back conve
of the generated Stokes light~through the anti-Stokes pro
cess! will occur for this system. This also means we c
safely assume that all the population remains in the gro
state at all times.
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With these simplifications, the pertinent operator equ
tions for this Raman system become

ȧp52kpap1 igasS121A2kp,0ap,0
in

1A2kp,1ap,1
in 1A2kp,Lap,L

in , ~24!

ȧs52ksas1 ig* apS12
† 1A2ks,0as,0

in

1A2ks,1as,1
in 1A2ks,Las,L

in , ~25!

Ṡ1252g21S121 ig* apas
†1A2g21S12

in , ~26!

where

g[
gp,13gs,23*

D
AN, ~27!

and N is the number of molecules. In obtaining Eqs.~24!–
~26!, we have renormalized the 1–2 coherence opera
(S12

old→S12
newAN) and we have defined the input coheren

operator

S12
in [

1

A2g21N
F12, ~28!

where the noise termF12 is given by Eq.~15!. We have also
assumed that the two-photon Raman detuning and the ca
detunings are zero, which is easily achieved in practice. N
that Eqs.~24!–~26! are decoupled from the populations.

To more fully characterize these simplified Raman la
equations, we note that the nonvanishing second-order
relation functions of the input field operators are

^ap,1
in ~ t !ap,1

in†~ t8!&5^ap,L
in ~ t !ap,L

in† ~ t8!&5d~ t2t8!, ~29!

^as,0
in ~ t !as,0

in†~ t8!&5^as,1
in ~ t !as,1

in†~ t8!&5d~ t2t8!, ~30!

^as,L
in ~ t !as,L

in†~ t8!&5d~ t2t8!, ~31!

where we have used the commutation relatio
@aq

in(t),aq
in†(t8)#5d(t2t8), and we have assumed that th

input fluctuations are ordinary vacuum, so that^aq
in†u→^0u

and uaq
in&→u0&.

To calculate the second-order correlation functions for
coherence input operator, we convert to the Ito calculus
that the system operators commute with the input operat
This conversion is not essential and does not alter Eqs.~24!–
~26! or the behavior of the system, but it does simplify t
mathematical treatment. Using the definitions given by E
~15! and~28!, and the fact that the input operators commu
with the system operators for the Ito calculus, we calcula

^S12
in ~ t !S12

in ~ t8!&5^S12
in†~ t !S12

in†~ t8!&50, ~32!

^S12
in†~ t !S12

in ~ t8!&5
ḡ32

N2g21
^S33~ t !&d~ t2t8!'0, ~33!
2-5
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^S12
in ~ t !S12

in†~ t8!&5
1

N2g21
@ ḡ21̂ S11~ t !1S33~ t !&1ḡ31̂ S33~ t !&

1g̃11̂ S11~ t !&1g̃22̂ S11~ t !&#d~ t2t8!

'
1

2g21
~ ḡ211g̃111g̃22!d~ t2t8!5d~ t2t8!,

~34!

where we have used the fact that all the population rem
in the ground state. Interestingly, the dearth of upper s
population means that the 1–2 input coherence operatord
correlated when the input fluctuations are vacuum, just
the field input operators.

V. CONNECTION TO THE NDOPO

With the input operator correlation functions establish
we can now draw a direct connection between the quan
cw Raman laser equations defined by Eqs.~24!–~26! and
those of the NDOPO@29# with the following associations
pump↔pump, Stokes↔signal, 1–2 coherence↔idler. The
connection between the stimulated Raman and optical p
metric processes was actually established shortly after
discovery of both from conceptual and mathematical sta
points by other researchers@30#. At that time, both of the
processes were only experimentally achievable in the pu
laser regime, making precise experimental comparisons
ficult. Since then, cw NDOPOs have been experiment
realized and have received a good deal of theoretical at
tion ~@31#, and references therein!. But not until recently has
the cw Raman process been so isolated from the compl
ing effects of the single-photon transitions. Indeed, the
perimental realization of the far-off-resonance cw Raman
ser now allows for detailed comparison with the c
NDOPO. We find it fascinating that such a precise cor
spondence resurfaces after a 35-year hiatus.

The predicted steady-state behaviors of the two syst
are identical and have been experimentally verified. Th
exhibit pump clamping~power limiting! behavior above
threshold@16#, which was first identified theoretically for th
NDOPO by Siegman@32#. Furthermore, the output modes
both systems exhibit square root dependences on the i
pump power, and peak photon conversion efficiencies
proaching 100% at four times threshold for single-end
cavities@33, and references therein#.

All of the population for both systems effectively rema
in the ground state, and both systems exhibit phase inse
tive amplification when only one output mode is observ
There is phase sensitivity hidden between the two ou
modes for the NDOPO case and between the Stokes and
coherence for the Raman case. The phase relationship
both the Raman and NDOPO cases was noted by Gi
maine@30#, with the result

fp5fs1f121p/2 ~35!

for the Raman case. Both systems also exhibit the attrac
feature of frequency insensitive gain. In other words,
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gain is nearly the same for visible and near-infrared pu
lasers. This is afforded by the large detuning from a
single-photon transitions in both the Raman and NDO
systems and allows for large frequency tuning ranges
spectral coverages of the emitted light@34#.

The only formal difference between these systems lies
what has become the fundamental difference between p
metric and stimulated processes@35#; that is, the NDOPO
must cope with phase matching difficulties, while the c
Raman laser must deal with heat deposition. There are
differences on a more practical level that can cause t
behaviors to deviate from Eqs.~24!–~26! and from one an-
other @23,36#.

There also exist less direct connections between the
Raman laser and the standard~based on population inver
sion! laser. For instance, when the atomic variables can
eliminated, one can associate the population inversion of
normal laser with the intracavity pump photon number of t
NDOPO and the Raman systems. Consequently, it is
population inversion that is clamped above threshold in
normal laser rather than the intracavity pump power~@37#, p.
514!.

In light of the similarities between the Raman and t
NDOPO systems, it is natural to think that an alternat
form of the Raman Hamiltonian, similar to that of th
NDOPO, may be valid. Indeed, such an alternative Ham
tonian does exist and can significantly simplify the quant
mechanical treatment of the cw Raman system. By way
direct analogy with the NDOPO, we obtain the two-phot
version of the Raman system Hamiltonian

Hsys5\vpap
†ap1\vsas

†as1\v21S12
† S12

2\~g* apas
†S12

† 1H.c.!, ~36!

whereg is given by Eq.~27!. To be clear, this system Hamil
tonian neglects all single-photon interactions, Stark shi
and power broadening, and assumes all the population
mains in the ground state. The decay and noise proce
associated with level 3 are also implicitly ignored with th
system Hamiltonian. It describes only the effects of the tw
photon Raman process. Note also that theS12 operator now
exhibits the bosonlike commutation relation@S12,S12

† #51
when the upper state population is negligible. With this a
including the noise and decay contributions, one can quic
derive Eqs.~24!–~26!, using the Heisenberg equation of m
tion. Some authors have successfully applied Hamiltoni
similar to Eq.~36!, but with S12 replaced by a phonon op
erator, to the Raman systems~see, for instance, Ref.@1#!. The
Raman system derivation up to this point establishes the
its of validity for such an approximate Hamiltonian.

VI. INTENSITY NOISE SPECTRA

We calculate the intensity noise spectra of the emit
light in this section using the linearization procedure dev
oped by Yamamoto@38# and others@39# and the input-output
formalism developed by Collet and Gardiner@40#. These
techniques have proven to be valuable tools for analyzing
spectra of parametric systems@29,41,42# as well as the sys-
2-6



m

m
th

i
n

n
tio

th

pa
a
s
s
tu
,
q

th

ud
th
a
lin

ud

at
n
e
in

th
a

t
d
la

and
-
mp
vity
This
nts

man
and
Sec-
WA
ity.

r
the
ac-
ns.

n
ady-

nd

r
ua-
des
that
sult,
tors
ct

are
es

QUANTUM THEORY OF THE FAR-OFF-RESONANCE . . . PHYSICAL REVIEW A 68, 013802 ~2003!
tems that explicitly involve atomic degrees of freedo
@3,5,18#.

We first adiabatically eliminate the 1–2 coherence fro
Eqs. ~24!–~26! above because its decay rate is by far
fastest of those remaining and we are concerned only w
the dynamics of the light. The two field operator equatio
become

ȧp52kpap2G1asas
†ap1 iA2G1asS12

in 1A2kp,0ap,0
in

1A2kp,1ap,1
in 1A2kp,Lap,L

in , ~37!

ȧs52ksas1G1apap
†as1 iA2G1ap~S12

in !†1A2ks,0as,0
in

1A2ks,1as,1
in 1A2ks,Las,L

in , ~38!

whereG1[ugu2/g12. The forms of these equations are ide
tical to previous semiclassical results except for the addi
of the input noise contributions@43#.

We next perform an amplitude-phase expansion on
operators using the relationaq5āqe2 ifq and similarly for all
the input operators. Other authors note that such an ex
sion is valid when the photon number is much larger th
unity @38, and references therein#. The expansion decouple
the amplitude behaviors from those of the phases. Thi
convenient because we are only interested in the ampli
behavior for the purposes of direct detection. Alternatively
field quadrature expansion can also be performed on E
~37! and ~38!, which yields identical noise spectra@29#.

The two amplitude operator equations that result from
amplitude-phase expansion look identical to Eqs.~37! and
~38! except that the operators are all replaced by amplit
operators. We then make an explicit distinction between
semiclassical steady-state field amplitudes and the small
plitude fluctuations about these stable mean values for
earization purposes. Specifically, we define the amplit
fluctuation operatordāq(t) through the relation

āq~ t !5uaqu1 1
2 dāq~ t !, ~39!

where uaqu[^āq& represents the real-valued steady-st
semiclassical field amplitude for large photon number a
the factor of 1/2 is included for later mathematical conv
nience. The input fluctuation operators are represented
manner analogous to Eq.~39!. However, only the input pump
operator has a nonzero mean deterministic value. All
other input operators represent purely stochastic noise
fluctuate about zero mean values.

The operator definitions given by Eq.~39! can be inserted
into the two amplitude operator equations. This generates
relations for both the semiclassical steady-state amplitu
and the amplitude fluctuations. For the steady-state semic
sical behavior above threshold, we obtain

uapu5Aks

G1
and uasu5Ahkp

G1
, ~40!

for the intracavity field amplitudes where
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and the pump rate and threshold are defined by

r p[
uap

inu2

uap
thu2

and uap
thu25

kp
2kst rt

2

G1Tp,0
. ~42!

The qualitative steady-state behaviors given by Eqs.~40!–
~42! are identical to those obtained by previous classical
semiclassical methods@17,43#, which accurately describe ex
perimental observations. Specifically, the intracavity pu
clamps above threshold and the semiclassical intraca
Stokes power grows as the square root of the pump rate.
consistency with the previous results and experime
strengthens the validity of the present method.

We note, however, that several factors prohibitG1 from
representing a quantitatively accurate estimate of the Ra
gain. First, spatial aspects such as focusing of the pump
the Stokes beams inside the cavity were not addressed.
ond, many significant atom-photon interactions and the R
were neglected in this treatment for the sake of simplic
However, these omissions only modify the Raman gain~and
therefore the laser threshold! quantitatively; they do not alte
the qualitative behavior of the system. Furthermore,
omissions are rendered insignificant by the fact that, in pr
tice, the Raman gain is obtained through empirical mea
See Ref.@17# to connectG1 to empirically based Raman gai
parameters and to include spatial considerations. The ste
state behavior given by Eqs.~40! and ~41!, as well as the
noise spectra results that we will now derive do not depe
on G1 ~they are all given in terms of the pump rate! and are
therefore quantitatively accurate.

By inserting Eq.~39! into the two amplitude operato
equations we also generate the amplitude fluctuation eq
tions. Here, we assume that the steady-state field amplitu
are very large compared to the associated fluctuations so
second-order fluctuation terms can be neglected. As a re
the time-dependent equations for the fluctuation opera
~signified byd ’s! are linear and can be written in the compa
form

d

dt
da~ t !52AO da~ t !1BO dSin~ t !1CO da0

in~ t !1DO da1
in~ t !

1EO daL
in~ t !, ~43!

where it is understood that all the fluctuation operators
functions of time and the following vectors and matric
have been defined

da5S dāp

dās
D , dSin5dS̄12

in S 1

1D , ~44!

da0
in5S dāp,0

in

dās,0
in D , da1

in5S dāp,1
in

dās,1
in D , ~45!
2-7
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daL
in5S dāp,L

in

dās,L
in D , ~46!

AO 5S kp1G1uasu2 2G1uapuuasu

22G1uapuuasu ks2G1uapu2D
5S ~11h!kp 2Ahkpks

22Ahkpks 0
D , ~47!

BO 5S 2A2G1uasu 0

0 A2G1uapu D
5diag~2A2hkp,A2kp!, ~48!

CO 5diag~A2kp,0,A2ks,0!, ~49!

DO 5diag~A2kp,1,A2ks,1!, ~50!

EO 5diag~A2kp,L,A2ks,L!. ~51!

Note that we have used the relations given by Eqs.~40! and
~41!.

In order to generate noise spectra, we take the Fou
transform of Eq.~43! and solve for the intracavity field fluc
tuations~in the frequency domain! to give

dã~v!5~ iv1AO !21@BO dS̃in~v!1CO dã0
in~v!

1DO dã1
in~v!1EO dãL

in~v!#, ~52!
e
d

01380
er

where the operators in the Fourier space are denoted
tilde’s and are defined by

dã~v!5
1

A2p
E

2`

`

dtda~ t !eivt, ~53!

and similarly for the input operators.
To transform the set of intracavity equations given by E

~52! to fluctuation equations outside the back of the cav
we use the cavity boundary conditions@40#

dã1
out~v!5DO dã~v!2dã1

in~v!, ~54!

where the vectorda1
out is composed of output fluctuation op

erators outside the back mirror~denoted by subscript 1!. In-
serting Eq.~52! into Eq. ~54! yields

dã1
out~v!5DO ~ iv1AO !21BO dS̃in~v!1DO ~ iv1AO !21CO dã0

in~v!

1@DO ~ iv1AO !21DO 2IO#dã1
in~v!

1DO ~ iv1AO !21EO dãL
in~v!, ~55!

whereIO is the identity matrix.
The output intensity noise spectra relative to the stand

quantum limit are given by the diagonal elements
the matrix VO out(v)5^dãout(v)@dãout(v)#†&. Taking the
input noise to be vacuum@^dS̃12

in (v)@dS̃12
in (v)#†&51, for

example# in all cases but the front pump input nois

@^dãp,0
in (v)@dãp,0

in (v)#†&[Vp,0
in (v) for this case#, we obtain

the following analytical expressions for the emitted relati
Stokes noise:
obtain

l

Vs,1
out~v!51 1

8ksks,1$v
212kpkp,0h@Vp,0

in ~v!21#1kp
2~12h2!%

v41@kp
2~11h!228kpksh#v2116kp

2ks
2h2

, ~56!

and the transmitted pump noise

Vp,1
out~v!511

4kp,0kp,1@Vp,0
in ~v!21#v2132kpkp,1ks

2h

v41@kp
2~11h!228kpksh#v2116kp

2ks
2h2

~57!

out the back of the cavity. By performing the same steps, but solving for the spectra emitted from the front mirror, we

Vp,0
out~v!5Vp,0

in ~v!1
4@Vp,0

in ~v!21#@kp,0
2 2kpkp,0~11h!#v2132kpkp,0ks

2h

v41@kp
2~11h!228kpksh#v2116kp

2ks
2h2

, ~58!

for the reflected pump spectra. The Stokes spectra emitted from the front mirror is identical to Eq.~56! with ks,1→ks,0 . The
steady-state expressions given by Eqs.~40!–~42! and the noise spectra given by Eqs.~56!–~58! are the primary mathematica
results derived in this work.
(
s

per
VII. ANALYSIS

We first compare the predictions of Eqs.~56! and ~57!
with the semiclassical numerical technique described in R
@43#. Using the parameters from that reference, Figs. 2 an
f.
3

show the predicted noise spectra at four times thresholdh
51) from Eqs.~56! and~57! as solid lines. The dotted line
are the predictions from Ref.@43#. All the curves are normal-
ized to the standard quantum limit~SQL!.

Two sets of curves are provided in both figures. The up
2-8
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QUANTUM THEORY OF THE FAR-OFF-RESONANCE . . . PHYSICAL REVIEW A 68, 013802 ~2003!
sets show the responses for input pump noise levels of 1
times the SQL, while the lower sets show those
Vp,0

in (v)510. As expected, the two theories closely agree
large noise levels, but deviate for low noise levels near
below the SQL. This is simply because the treatment gi
in Ref. @43# does not include quantum noise contribution
while the present treatment does. We emphasize that
noise predictions of Ref.@43#, and therefore those of th
present work, accurately describe experimental data for n
levels far above the SQL. Noise levels approaching the S
have not yet been experimentally investigated.

We also point out that Eq.~56! exactly matches~in the
appropriate limits! Eq. ~3.18! from Ref. @29#, which was ob-
tained through a field quadrature expansion for the NDOP
To confirm this, note the following:h5s2, kq5gq/2, g i
@gs ,gp , and the annoying factors of 4 are avoided in t
present treatment with the factor of one-half in Eq.~39!.
Reference@29# also demonstrates that it is possible~and in-
formative! to decompose the output noise spectra into th
constituent noise contributions.

Several limiting cases can yield insight into the phys
embedded within Eqs.~56!–~58!. In the high-frequency
limit, the output spectra become

FIG. 2. Plot of the Stokes intensity noise relative to the SQL
a function of the Fourier frequency. The solid curves represent
predictions from Eq.~56!, while the dotted curves represent those
Ref. @43#. The upper set of curves shows the noise spectra for a
input pump noise 1000 times the SQL, while the lower set sho
that for an input pump of 10 times the SQL. Discrepancies betw
the two theories are observed when the noise is near or below
SQL, as expected.

FIG. 3. Same as Fig. 2 except plotting the transmitted pu
noise@Eq. ~57!# instead of the output Stokes noise.
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Vs,1
out~v!5Vp,1

out~v!51 ~v@kp ,ks!, ~59!

Vp,0
out~v!5Vp,0

in ~v! ~v@kp ,ks!, ~60!

for all pump rates. This indicates that the input pump flu
tuations simply bounce off the input coupler when they a
well above the cavity linewidths. This leaves only the r
flected vacuum fluctuations for the Stokes and the trans
ted pump output fluctuations in this limit.

The lower frequency limit is more interesting. For fre
quencies well below the cavity linewidths, Eq.~56! becomes

Vs,1
out~v!511

1

2h2

ks,1

ks
H 2h

kp,0

kp
@Vp,0

in ~v!21#112h2J
~v!kp ,ks!. ~61!

This system is very noisy near threshold (h!1), a trait that
it shares with other laser systems. For very high pump ra
(h@1), on the other hand, the output Stokes noise
proaches 12ks,1/2ks . This indicates that noise fluctuation
below the SQL are possible at high pump rates. The no
level approaches a lower limit of 50% below the SQL wh
ks,15ks ~i.e., in the absence of the Stokes mirror abso
tion!.

At a pump rate of four times the threshold value (h51,
r p54), the low-frequency Stokes noise simplifies to

Vs,1
out~v!511

ks,1kp,0

kskp
@Vp,0

in ~v!21#

~v!kp ,ks and h51!. ~62!

From this result we see that for a single-ended lossless ca
(ks5ks,1 andkp5kp,0), the system displays perfect photo
statistics transfer from the input pump to the output Sto
for a pump rate of four times threshold and for frequenc
below the cavity linewidths, that is,Vs,1

out(v)5Vp,0
in (v) for

this ideal case. This is the AC analog to the 100% pho
conversion efficiency that is possible in the steady-state
this particular pump rate~@33#, and references therein!.

Also in the low-frequency limit, Eqs.~57! and ~58! be-
come

Vp,1
out~v!511

2

h

kp,1

kp
~v!kp ,ks! ~63!

and

Vp,0
out~v!5Vp,0

in ~v!1
2

h

kp,0

kp
~v!kp ,ks!. ~64!

The transmitted pump noise given by Eq.~63! does not de-
pend on the input pump noise. This is the AC analog to
pump clamping that is observed in the steady-state ab
threshold. The first term~i.e., the 1! in Eq. ~63! represents the
vacuum fluctuations that are reflected off of mirror 1. T
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ROOSet al. PHYSICAL REVIEW A 68, 013802 ~2003!
second term represents the noise transmitted through
mirror from the circulating pump. Similarly, the reflecte
pump noise given by Eq.~64! is composed of the reflecte
portion of the input pump noise~the first term! and the trans-
mitted portion of the circulating pump noise~the second
term!. In both cases, larger pump rates~larger h) result in
smaller contributions from the circulating pump fluctuation
The equations predict that neither of these fluctuations
dip below the SQL when the input fluctuations are classic

For clarity, we now confine the analysis to the Stok
output from a single-ended lossless cavity (ks5ks,1 andkp
5kp,0). Figure 4 illustrates the pump rate behavior of t
intensity noise for the Fourier frequencies below the cav
linewidths (v!kp ,ks) and for several different input pum
noise levels. A coherent state input pump noise correspo
to Vp

in(v)51. As predicted by Eq.~61!, the Stokes intensity
noise is well above the SQL near threshold (h'0, r p'1)
for all curves, but is equal to the input pump noi
@Vs

out(v)5Vp
in(v)# at four times threshold (h51, r p54) for

all curves. A vertical dotted line atr p54 is provided to em-
phasize this point.

Also as predicted, the output intensity noise can drop
low the SQL@Vs

out(v)51# for higher pump rates and asymp
totically approachesVs

out(v)51/2 in the limit of large pump
rate (r p@1) even when the input pump noise is greater th
the SQL. A horizontal dotted line atVs

out(v)51/2 is provided
in Fig. 4 to emphasize this point.

The behavior between the extremely low and extrem
high-frequency limits depends critically on the ratio of t
two cavity decay rates. Figures 5 and 6 help illustrate
issues involved. Figure 5 shows the Stokes intensity nois
a function of Fourier frequency for a pump rate of four tim
threshold (h51, r p54) and an input pump noise ten time
greater than the SQL@Vp

in(v)510#. Several curves are give
corresponding to several different values of the cavity de
rate ratio (ks /kp). The Fourier frequency on the horizont
axis is given relative toAkpks to maintain a constant thresh
old for all curves. As the decay rate ratio increases, re
ation oscillations become undamped as evidenced by the

FIG. 4. Plot of the Stokes intensity noise relative to the SQL
a function of pump rate for frequencies well below the cavity lin
widths. Curves for several different values of the input pump int
sity noise are shown. The system exhibits perfect photon stati
transfer from pump to Stokes at four times threshold and the in
sity noise approaches 50% below the SQL in the limit of lar
pump rate.
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creasing noise peak in the figure. In general, decreasing
cavity decay rate ratio~i.e., making the Stokes cavity finess
greater than that of the pump! suppresses these relaxatio
oscillations. This is consistent with previous findings in t
time domain@44#.

The relaxation oscillation behavior is also dependent
the pump rate. This is illustrated in Fig 6. The figure sho
the normalized intensity noise as a function of the Four
frequency for the symmetric case whenkp5ks and for an
input pump noise of ten times the SQL. Several curves
provided corresponding to different pump rates. The rel
ation oscillations are diminished and pushed to higher
quencies as the pump rate is increased. Also note
@Vs

out(v)5Vp
in(v)# for the four-times-threshold curve at low

frequencies. In general, increasing the pump rate yie
broadband noise suppression.

Figure 4 implies that with a sufficiently quiet pum
source, and for a sufficiently high pump rate, intens
squeezing can be observed. However, this is only true for
Fourier frequencies below the cavity linewidths. Unfort
nately, the desire for large cavity linewidths directly com
petes with the desire for large pump rates because an
crease in the cavity bandwidths necessarily results in
increase in the threshold. This is a common dilemma fou

s
-
-
cs
n-

FIG. 5. The Stokes intensity noise relative to the SQL as
function of normalized Fourier frequency for several different rat
of the cavity decay rates (ks /kp) and for a pump rate of four times
threshold. Decreasing the cavity decay rate of the Stokes relativ
that of the pump suppresses the relaxation oscillations.

FIG. 6. The Stokes intensity noise relative to the SQL as
function of normalized Fourier frequency for several different pum
rates, equal cavity decay rates (ks5kp) and for an input pump
noise ofVp

in(v)510. Increasing the pump rate suppresses the
laxation oscillations and pushes them to higher frequencies.
2-10
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in many other nonlinear optical systems and poses a sig
cant obstacle to experimentally generating intensity no
levels below the SQL for this system.

VIII. SUMMARY

In this work, we presented the quantum theory of t
far-off-resonance cw Raman laser using the Heisenb
Langevin approach. The large single-photon detuning
moderate Rabi frequencies present in the system prov
the means for significant simplification of the quantu
Langevin equations. These simplifications enabled us to
tablish a strong connection between this cw Raman sys
and the cw NDOPO.

We linearized the simplified quantum Langevin equatio
in order to generate analytical expressions for the ou
noise spectra from this laser system. We showed that both
steady-state and the time-dependent results were cons
with previous semiclassical treatments in the appropr
m
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limits. We also showed that perfect photon statistics trans
from the pump to the Stokes can occur for low Fourier f
quencies when a single-ended lossless cavity is pumpe
four times threshold. For higher pump rates, we predict t
this system can exhibit 50% noise reduction below the S
within the cavity bandwidths. In order to suppress relaxat
oscillations in the system, we showed that the most favora
operational conditions were high pump rate (r p@1) and low
ratio of cavity decay rates (ks!kp). In other words, the
cavity finesse for the Stokes should be greater than tha
the pump and the threshold should be as low as possibl
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