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Transforming chaos to periodic oscillations
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We demonstrate that the dynamics of an autonomous chaotic class C laser can be controlled to a periodic
state via external modulation of the pump. In the absence of modulation, above the chaos threshold, the laser
exhibits Lorenz-like chaotic pulsations. The average amplitude and frequency of these pulsations depend on the
pump power. We find that there exist parameter windows where modulation of the pump power extinguishes
the chaos in favor of simpler periodic behavior. Moreover we find a number of locking ratios between the
pump and laser output follow the Farey sequence.
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I. INTRODUCTION

In nonlinear systems with two degrees of freedom o
parameter must be modulated in order to generate a t
degree of freedom, thus allowing chaos to emerge. M
laser chaos experiments are performed this way@1#. Alterna-
tively if a system already has three degrees of freedom, t
chaos can emergewithout modulation. The Lorenz-like
chaos in the ammonia laser is an example of such auto
mous chaos@2#.

Dynamics of such chaotic systems have been studied
theoretically@3–5# and experimentally@6,7#. However, rela-
tively little work has been done in investigating the prop
ties of an autonomous chaotic system where one of the
rameters is made time dependent@8#. This can either increas
the complexity of the dynamics or simplify it. One mech
nism for controlling autonomous chaos is to periodica
cross the chaos threshold by varying the pump power@5,7#.
However, this mechanism obviously cannot be used to c
trol chaos if the system is permanently above the cha
threshold. It is well known that a chaotic attractor is wou
around a set of unstable periodic orbits@9#. This has led to
the development of algorithms such as the Ott-Grebo
Yorke ~OGY! method@10# to select these orbits and contr
them. This requires detailed knowledge of the dynami
system, for example, an accurate estimate of the direction
the unstable and stable manifolds, in order to estimate h
much change should be applied to a parameter in orde
gain control. Thus the OGY algorithm is suitable for slo
oscillating systems, but the required computation rapidly
comes intractable for fast oscillating systems.

Other feedback methods require no knowledge of the s
tem Examples include occasional proportional feedback
Nd:YAG pumped KTP crystal forming a multimode auton
mous laser@11#, and in a diode pumped Nd-doped silica fib
multimode autonomous laser@12#. Control by subtractive
feedback has been shown in a nonautonomous CO2 laser
@13# and an autonomous NH3 laser@14#. These systems re
quirea priori knowledge of the average period of the chao
pulsations, and a subtraction of the measured time se
from its value at an earlier time.

Since these methods may not always be appropriate
experimentally explore an alternative approach, which c
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sists of applying a modulation to one of the parameters of
dynamical system. This changes the original system, but
a sufficiently small modulation, the unstable periodic orb
are similar to the corresponding orbits in the unmodula
system. Stabilizing one of these orbits should give contro
predicted by theoretical studies@4,9,15,16#.

To date, only class A and B lasers have been used
optical studies of control of chaos by modulation. For e
ample, a nonautonomous class B laser was controlled b
small modulation of the losses to a periodic state@17#. Sub-
harmonics of the pump were observed and three differ
locking ratios were found. Control of a class B multimod
autonomous laser was found by modulating the pump@18#.
In all cases the controlled output contained higher harmon
of the pump. A large range of locking ratios were found a
chaos was almost suppressed to a dc level when the m
lation frequency was above 25% of the fundamental pu
tion frequency. It is interesting that a larger modulation
the pump was required to control the dynamics compare
modulation of the loss in the case of a multimode solid st
laser@19#.

Here, we use a chaotic class C laser, which has previo
been shown to be well described by the complex Lore
equations@20#. Previous numerical studies of these equatio
include modulation of the inversion across the bifurcati
point @21#, replacing the Rayleigh parameter with a time d
pendent term@15#, and modulation of the inversion above th
bifurcation point for the real Lorenz equations~corresponds
to a nondetuned laser! @3#. Elsewhere we extend the latte
model to include detuning@22#. It is this system which we
explore here.

We find that there are many regions in modulation amp
tude and modulation frequency parameter space, that c
the dynamics of the chaotic laser to frequency lock to
external periodic modulation, which form Arnold tongue
and the locking ratio is rational. We show that a chaotic la
can be controlled to periodq when modulated at periodp,
and the fractionsp/q belong to the Farey sequence as w
found in a nonchaotic laser@23# and in a bimode laser with a
saturable absorber@24#. We find that these Arnold tongue
are very narrow.

II. EXPERIMENT

Our system consists of15NH3 ring laser which is optically
pumped by a13CO2 laser through a vibrational transition a
©2001 The American Physical Society20-1
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10.78 mm. The lasing occurs through a rotational transiti
at a wavelength 0.153 mm. We use a semiconfocal ring c
ity as shown in Fig. 1, to achieve unidirectional lasing, whe
the backward traveling wave is chosen in preference to
forward wave because the ac. Stark effect splits the gain
in the forward direction@25#.

Dynamics are optionally imposed on the pump by pass
the laser beam though an acousto-optic modulator~AOM!.
The signal applied to the AOM is programmed using
arbitrary function generator. We monitor the CO2 intensity
via the first diffracted order from the AOM. This is detecte
by a HgxCd12xTe photodetector A. The dynamics of the f
infrared laser are observed by detecting the intensity of
output field with a fast Schottky barrier diode detector B, s
Fig. 1. The signals from both detectors are recorded sim
taneously onto a digital storage oscilloscope.

III. EXPERIMENTAL RESULTS

A. Harmonic pump modulation, harmonic
generation–control to period 1

In general, modulation of the pump leads to no noticea
simplification in the dynamics. However, we have been a
to identify a number of cases where, for specific ranges
modulation frequency and amplitude, periodic pulsations
place the chaotic spiking. Four cases are presented. Bec
the parameter ranges where periodic behavior can be
served are narrow, special care had to be taken to overc
the effects of unavoidable drifts during the experiment. O
then was it possible to distinguish consistent and reprod
ible patterns of behavior.

We apply a modulation to the pump of the formf (t)
5A@11sin(vt)# rather thanf (t)5A sin(vt), so that we can
be sure modulation occurs above the chaos threshold.
wave form is programmed into an arbitrary function gene
tor which in turn modulates the AOM. The frequency w
chosen to be near the average pulsation frequency of the
running chaosf 0. The lower trace of Fig. 2 indicates th
periods where pump modulation was applied. The modu
tion depth was 20% as shown on the right handy-axis scale.
The upper trace shows the response of the FIR laser to
modulation. In order to display a time period much long
than the time between individual pulses, only the maxim

FIG. 1. Experimental schematic: CO2 laser is the pump, NH3
ring laser is the chaotic system, Gr is a blazed grating at the p
wavelength (10.78mm) which doubles as a mirror for the lasin
wavelength (153mm), wm is a wire mesh used as an output co
pler, AOM is an acousto-optic modulator, detector A monitors
pump dynamics, and detector B monitors the FIR dynamics.
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pulse height is displayed, so that a horizontal line represe
periodic pulses and each spike represents a Lorenz ‘‘spi
of several successive pulses of increasing amplitude.

When modulation is applied, it is clear that the dynam
of the FIR laser has been transformed and is no longer c
otic. Figure 3~a! is an expanded view of one of the segmen
from Fig. 2. This shows that the Lorenz-like chaotic puls
tions exist before modulation is applied to the system, an
period one signal develops as modulation is applied. T
Fourier transform is calculated for the unmodulated la
output, and modulated output from Fig. 3~a!, and shown as
the upper trace, and lower trace, respectively, of Fig. 3~b!.
The initially chaotic system possesses a broad spect
~gray!, with three broadened harmonics of the fundamen
pulsation frequency. This collapses to a set of sharp w
defined harmonics with the fundamental located at the p
tion of the fundamental pump modulation frequency. Th
shows the transformation from chaos to period 1 pulsatio

In Fig. 4 we examine these spectra more closely. Fig
4~a! is the spectrum of the FIR laser under modulation a
Fig. 4~b! that of the pump. Higher harmonics of the fund
mental are present even though there are only three evi
harmonics associated with the pump. This may be that
laser is amplifying the pump harmonics, or that output h
monics are generated from a single pump modulation
quency, of some combination of both.

To analyze the effect of pump modulation on the F
laser, we take the ratio of the spectrum during modulation
the spectrum without, as shown in Fig. 4~c!. A dashed line is
added at the 0 dB level to differentiate attenuation and
hancement. It is clear that most frequencies have been
tenuated whilst only the harmonics of the pump modulat
frequency have been enhanced.

As the laser is initially chaotic before control was applie
we expect that the dynamics of the system does not im
diately change from a chaotic state to a periodic state at
turn-on of the modulation, but does so after a few cycles

p

-
e

FIG. 2. Control to period 1. The lower trace is a schematic
the dynamics applied to the pump. The blocks of height 20% r
resent the period where pump modulation is applied~the modula-
tion depth is shown on the right handy axis!. The upper trace is the
peakoutput intensity of the pumped laser~intensity is shown on the
left hand axis!. As this is peak intensity, the flat regions represe
period 1 pulsations.
0-2
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TRANSFORMING CHAOS TO PERIODIC OSCILLATIONS PHYSICAL REVIEW E64 056220
FIG. 3. Expanded view from -0.23 ms to 0 ms of Fig. 2.~a! Top trace is the intensity of the NH3 laser output, lower trace is the pum
intensity~the modulation depth between 0.25 ms and 0.3 ms is 20%!. ~b! Frequency spectra of the left~right! hand side of the NH3 intensity
trace from~a! are shown as the gray~black! trace. Note that the broad spectrum of the unmodulated case is transformed into a ha
spectrum in the modulated case. The arrow indicates the position of the fundamental pump modulation frequency.
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irregular behavior. This is most clearly seen by perform
the following experiment. The laser was modulated atf 0 to
give period 1, then allowed to return to its chaotic state~by
removing the modulation!, finally the same modulation wa
applied to the laser thus resulting in period 1. Figure 5 t
sequence of events, allows the laser to develop different
tial conditions between the first and second modulation
riod of control. Figure 6 shows the intensity outputs fro
both periods. The solid line is the response to the first mo
lation, while the dashed line is the response to the sec
Both these lines are different between time zero and 0.
ms, since at this interval both intensities are not pha
locked to the pump modulation. After 0.014 ms, both the
intensities are phased locked, hence the two curves in
graph of Fig. 6 collapse onto the phase locked curve.

FIG. 4. Fourier spectra for~a! the pump modulated FIR lase
output, ~b! the pump modulation, and~c! the ratio of the pump
modulated FIR laser output to the unmodulated laser output.
angles indicate the position of the integer harmonics. the das
line indicates the position of zero gain, note that only the harmon
of the pump are amplified, all other frequencies are suppresse
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Experimentally, control to period 1 could be observ
over a narrow range of pump modulation frequency and a
plitude. Changing any one of the parameters by 1%
enough to destroy control. Clearly, experimental drift issu
would need to be addressed before undertaking a full ma
the parameter space, but these results are enough to
that while control is possible, it is not easy to achieve.

B. Harmonic pump modulation, subharmonic
generation–control to period 3

We also found that it is possible to control states to hig
integer periods~e.g., pattern repeats every three pulses!. Fig-
ure 7 is similar to Fig. 3~a! except now we have lowered th
pump modulation frequency by 16%. It shows that the la
takes many cycles before it settles down to period 3 pu
tions, and that the period 3 behavior is not perfectly regu
We believe this is due to the sensitive dependence on mo
lation frequency relative to the natural pulsation frequency
the ammonia laser which in turn depends on the freque
and power of the pump laser, both which are subject to ji
and drift. In the frequency domain it is clear that the dyna
ics of the laser has been simplified, as is evident in Fig
The frequency spectrum for the FIR laser output is shown
the upper trace, and the pump spectrum on the lower tr
Note that we are pumping near the fundamental freque
f 0, and we generate rational subharmonics at1

3 f 0 and 2
3 f 0,

indicated byf 1 and f 2 in Fig. 8, which are not present in th
pump. Higher harmonics such as4

3 f 0 and 5
3 f 0 are present as

well as integer multiples of all rational harmonics.
We found that the laser output contains harmonics of

pump when the modulation frequency was chosen to

i-
ed
s

FIG. 5. Schematic of modulation applied to the pump. T
pump is modulated atf 0, the fundamental pulsation frequency, fo
100 cycles between a and b, followed by a period of no modula
between b and c, followed by 100 cycles atf 0 between c and d.
0-3
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about 10% higher thanf 0. However, if we bring the modu
lation frequency to within a few percent off 0, we find that
subharmonics emerge in addition to the pump harmonics

C. Subharmonic pump modulation, subharmonic
generation–control to period 1

Consider the chaotic spectrum of Fig. 3. The results of
last two sections were obtained by modulating at a freque
near to the first peak of the chaotic spectrumf 0. If we instead
modulate at half this frequency, Fig. 9 shows the res
There is transient behavior for approximately 20 cycles
fore the FIR laser output is controlled to period 1 atf 0. This
is clearer in the associated frequency spectrum show
Figs. 10~a! and 10~b!. As previously, there are sharp we
defined harmonic peaks in the FIR laser output spect
which shows periodic behavior. However, now the main p
sation frequency of the laser is at twice the pump modula
frequency. Figure 10~c!, the ratio of the modulated to th

FIG. 6. Two intensity outputs of the laser corresponding
modulation of the pump to give period 1. The solid line is t
response to modulation atf 0, while the dashed line also is a re
sponse to the same modulation, but applied after the system
allowed to return to its chaotic state. Therefore the difference
tween the two traces is the initial conditions.

FIG. 7. Control to period 3 after many pulses of instabilit
Same conditions as Fig. 3~a! except that the modulation frequenc
is lowered by 16%.
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unmodulated spectra, shows that the enhancement of1
2 f 0

~located at 0.4 MHz! is slightly larger than atf 0. However,
the time trace in Fig. 9 clearly shows the main pulsati
frequency to be atf 0, not at 1

2 f 0. This is evident in the FIR
output spectrum in Fig. 10~a! since the signal atf 0 is larger
than at 1

2 f 0 due to the fact that the baseline atf 0 is higher
than at 1

2 f 0. This suggests that the mechanism for cont
could be that the unstable periodic orbit at1

2 f 0 has been
stabilized, or that the second harmonic of the pump, is
bilizing the unstable periodic orbitf 0 of the FIR laser. The
presence of these two harmonics in the pump dynam
makes this distinction ambiguous.

D. Subharmonic pump modulation subharmonic
generation–control to other periods

We now look for locking ratios other than 1/1 with th
aim of stabilising any other unstable periodic orbits that m
exist. We do this by systematically stepping through mod
lation frequency with a fixed amplitude to search for period
solutions. Figure 11 is a graphical description of this expe

as
e-

FIG. 8. Control to period 3. Lower trace is the frequency spec
of the pump where the modulation frequency is indicated by a d
The upper trace is the frequency of the FIR laser during modulat
f 0 , f 2 , f 1 indicate the fundamental pulsation frequencyf 0, and the
rational subharmonics23 f 0, and1

3 f 0, respectively. Note the presenc
of higher harmonics of these frequencies.

FIG. 9. Control to period 1 from an initially chaotic state. Upp
trace is the FIR laser intensity output, lower trace is the modula
applied to the pump at12 f 0.
0-4
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TRANSFORMING CHAOS TO PERIODIC OSCILLATIONS PHYSICAL REVIEW E64 056220
ment. The lower trace shows the variations in pump pow
imposed by the AOM. We fix the amplitude and reduce
frequency of modulation in five discrete steps each of wh
last about 100 cycles. These are separated by unmodu
periods lasting the same amount of time. This is schem
cally shown as sine waves separated by horizontal line
Fig. 11. This sequence is sandwiched between two ra
functions. The purpose of the ramp is to locate the ch
threshold for the laser system, which was used to check

FIG. 10. Fourier spectra for~a! the pump modulated FIR lase
output, ~b! the pump modulation and~c! the ratio of the pump
modulated FIR laser output to the unmodulated laser output.
angles indicate the position of the integer harmonics. the das
line indicates the position of zero gain, note that the harmonics
subharmonics of the pump are amplified, all other frequencies
suppressed.

FIG. 11. The lower trace represents the dynamics applied to
pump. This consists of a triangle wave form of low frequen
followed by five sinusoidal wave forms labeled 100, . . . ,96with
relative frequency 100, . . . ,96, respectively, followed by anothe
slow triangle wave form. The triangle wave form is used as a di
nostic to locate the chaos threshold. The five sine waves repres
systematic step through the frequency parameter at fixed amplit
This gives us information on how close controlled orbits are
frequency, and the width of control. The upper trace is FIR la
output where only the maximum intensity peaks are displayed.
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the modulation sequence remained above the chaos thres
in spite of any parameter drift. The upper trace shows
FIR laser response to these events. For display purposes
the maximum pulse height is shown.

The first modulation applied in the sequence is labe
‘‘100.’’ The dynamics shown in the upper trace is no long
Lorenz-like but more complicated.~This is not apparent in
Fig. 11 because of aliasing in the printing.! As the frequency
is reduced~99! the dynamics is still not simplified, howeve
there is a small section in the time series where the signa
period 4 before complicated dynamics takes over. When
frequency is reduced further~98! there is a small period o
transient behavior at the start of the modulation but the
tensity quickly settles down to period 4 pulsations and
mains there until the modulation is turned off. This is show
in more detail in Fig. 12. Decreasing the modulation fr
quency further~97! destroys any period 4 behavior in favo
of complicated dynamics, although there now is a small s
tion in the time series where period 7 emerges, but does
persist for the modulation duration. Finally, decreasing
frequency by one more step~96! results in the intensity fol-
lowing a period 7 orbit after a relatively short initial irregula
behavior. These results are typical. It is instructive to anal
the dynamics of the system by constructing a Lorenz m
from the intensity data. This is a plot of the peak intensity
a pulse against the peak intensity of the previous pulse@26#.
For a Lorenz-like chaotic system a cusp shaped curve
traced out@27#. Figure 13 shows the Lorenz Maps of th
chaotic system~a! without modulation and~b! with modula-
tion for the period 4 case. Without modulation there is t
characteristic cusp shape indicative of chaos. With modu
tion four definite regions become apparent. All points a
connected by lines to give time ordering information, so th
periodic behavior can be easily distinguished from a non
riodic signal or chaos, since a periodn signal will appear as
ann-sided polygon. The lines outside this polygon are due
the transient behavior before control. This metastable beh
ior is due to the nonperfect intersection of the attractor c
responding to the unmodulated chaotic laser, with the att
tor of the modulated laser, and the weak stability of the n
attractor as discussed earlier. Sampling error and dete
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FIG. 12. Expanded view of third modulation segment labe
‘‘98’’ in Fig. 11. This shows period 4 pulsations exist after 3
irregular pulses after the application of modulation.
0-5
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noise cause the four points of the polygon to have so
spread from an ideal polygon generated from noise
points. Figure 14~a1! and 14~b1! are the spectra of the modu
lated FIR laser for period 4 and 7, respectively. The ass
ated pump spectra are shown on plots~a2! and ~b2!.

A similar sequence of modulation was applied to t
pump which resulted in the generation of a period 6 or
shown in Figure 15. The frequency spectra of the modula
pump and laser output is shown on Figure 16. It is clear t
the pump modulation frequency is not on the fundamen
pulsation frequency of the laser outputf 0, but at 5

6 f 0.
These results show that the fundamental pulsation

quency of the FIR laserf 0 does not coincide with any of th
harmonics of the pump, since control to period 4, 6, an
required a modulation frequency of3

4 f 0 , 5
6 f 0, and 5

7 f 0, re-
spectively. From the time domain we know that the pum
modulation and the FIR laser output are phase locked. T
shows that there are three more Arnold tongues with lock
ratios 3:4, 5:6, and 5:7, respectively. For the real Lore
equations, locking ratios of the form (l -1):l and (l -2):l were
predicted forl .10 @3#. In our casel was 3, 4, and 5, respec
tively.

FIG. 13. Lorenz maps of the FIR laser output are construc
from Fig. 12.~a! Without modulation and~b! with modulation. The
cusp shape in~a! is characteristic of Lorenz-like chaos. The pol
gon shape of~b! when the points are joined shows period fo
pulsations.
05622
e
s

i-

it
d

at
l

-

7

p
is
g
z

It has been found that the dependence of the locking ra
on a control parameter forms a Devil’s staircase in the cir
map@28# and in the Bonhoeffer Van der Pol model@29#, and
is considered to be a universal phenomena. The Devil’s s
case is made up of rational numbers belonging to the Fa
sequence. That is, given two locking ratiosp/q andr /s there
can be another locking ratio of (p1r )/(q1s) restricted to
ups2qru51. We have found six of these locking ratios 1:
1:2, 1:3, 3:4, 5:6, and 5:7. These lie on six stairs of t
Devil’s staircase on a graph of locking ratio against modu
tion frequency. We cannot explicitly assign lengths to ea
of these stairs as the modulation frequency could only
altered in discrete steps(1%). To get anestimate of the
lengths of each of the stair we return to the experimental d
summarized in Fig. 11. The segments labeled~99! and ~97!
show windows of period 4 and period 7, respectively, bef
complicated dynamics takes over as mentioned earlier. T
is not a simple phase slip of the period 4 and period 7 orb
as can occur at the boundary of an Arnold tongue@30#.
Therefore these two segments lie outside the Arnold tong
thus we can be sure that the width of these tongues are
than 1% for a modulation depth of 20%. The period 4 a
period 7 orbits which briefly appear are the result of t
trajectories in phase space finding a period 4 and perio
saddle orbit. The trajectories follow the stable manifold fo
few periodic cycles before the unstable manifold of t
saddle orbit takes effect and repels it to another torus. Th
fore we know the lengths on the stairs in the Devil’s stairca
of our data would have an upper bound of 1% of the mo
lation frequency, and a nonzero lower bound since these

d

FIG. 14. Fourier spectra for two different harmonic generat
experiments:~a1! and ~b1! are the spectra of the FIR laser durin
modulation to give periods 4 and 7 respectively. The correspond
dynamics applied to the pump are shown in~a2! and ~b2!, respec-
tively. The triangles indicate the position of the integer harmon
while the stars indicate rational harmonics. In both cases the m
mum peak in the FIR spectra correspond the the fundamental
sation frequency of the unmodulated chaos.
0-6
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TRANSFORMING CHAOS TO PERIODIC OSCILLATIONS PHYSICAL REVIEW E64 056220
periments were repeatable. Thus the narrow width of mo
lation frequency required to give control strongly sugge
that resonance is taking place, that is the mechanism
control is likely to be stabilization of the unstable period
orbit in the modulated system.

Experimental difficulties such as drift of the laser para
eters and discreteness of modulation frequency it is diffic
to locate the positions of each stable island in the param
space. Elsewhere we present a theoretical treatment tha
ables a more systematic exploration of the number and st
ture of these islands in control parameter space@22#.

IV. CONCLUSION

We have demonstrated experimentally that a class C l
can be controlled to a periodic state even though it is dri
above the chaos threshold, by applying an appropriate mo
lation frequency to the pump. It is also possible to modul

FIG. 15. Control to period 6. The lower trace is the pump a
the upper trace is the FIR laser output.
g,
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the pump at the fundamental pulsation frequency of the c
otic laser to generate not only integer harmonics of
pump, but also rational harmonics that are not present in
pump modulation frequency. We have also shown that c
trol is not restricted to modulating at the harmonics of t
fundamental pulsation frequency, as pumping at rational v
ues of the harmonic, according to specific values of the Fa
sequence, also gave control. We therefore expect there
other locking ratios which could give control. We found th
the Arnold tongues were close together but they did
overlap thus allowing control to a unique period for partic
lar parameter values. The width of the tongues in freque
space is very narrow, since changing any parameter of
order of 1% destroyed control. It is likely that the mechanis
for control is stabilization of one of the existing close
spaced unstable periodic orbits in the modulated system

FIG. 16. Control to period 6. The lower trace is the frequen
spectra of the pump during modulation and the upper trace is
frequency of the FIR laser during modulation.
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