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Abstract. Entanglement is a critical resource used in many current quantum
information schemes. As such entanglement has been extensively studied in two
qubit systems and its entanglement nature has been exhibited by violations of
the Bell inequality. Can the amount of violation of the Bell inequality be used to
quantify the degree of entanglement? What do Bell inequalities indicate about
the nature of entanglement?

Entanglement was recognized early as one of the key features of quantum
mechanics [1, 2]. Entanglement can be described as the correlation between
distinct subsystems which cannot be created by local actions on each subsystem
separately. The advantage o� ered by quantum entanglement relies on the crucial
premise that it cannot be reproduced by any classical theory [3-5]. Despite the fact
that the possibility of quantum entanglement was acknowledged almost as soon as
quantum theory was discovered, it is only in recent years that consideration has
been given to � nding methods to quantify it [6-17]. Historically the Bell inequal-
ities were seen as a means of determining whether a two qubit system is entangled.
It was known that the larger the violation of the Bell inequality the more the
entanglement present in the system [18]. This led to the perception that to some
degree the Bell inequalities were a measure of entanglement in such systems.

In 1994 it was discovered that not all entangled states violate a Bell inequality
[19]. It was shown that the Werner state, a mixture of the maximally entangled
state and the maximally mixed state can be entangled (inseparable) and yet not
violate the conventional Bell inequality [20, 21]. It was found that multiple copies
[22] of the Werner state could be distilled to a state that does violate the Bell
inequality. Hence it is important to specify now that our interest lies in whether a
single particular state violates such an inequality. It was shown by Gisin et al. [23]
that there are states which do not violate this inequality, but can be distilled by
local operations and classical communication to produce a state that does. Our
interest is in whether the original state violates such inequalities. These observa-
tions are important experimentally because the Bell inequalities have been one of
the few methods available to determine whether a two qubit state has quantum
properties. There have been quite a number of experimental tests of the Bell

Journal of Modern Optics ISSN 0950-0340 print/ISSN 1362-3044 online # 2001 Taylor & Francis Ltd
http://www.tandf.co.uk/journals

DOI: 10.1080/095003400110034532

journal of modern optics, 2001, vol. 48, no. 7, 1239- 1246

{ Current Address is: Hewlett-Packard Laboratories, Filton Road, Stoke Gi� ord,
Bristol BS34 8QZ, UK; e-mail: billm@hplb.hpl.hp.com

http://www.tandf.co.uk/journals


inequality [24] using polarisation entangled photons from a spontaneous para-
metric down conversion source. Kwiat et al. [25] have shown a 242¼ violation of
Bell’s inequality. Here maximally entangled pure Bell states were produced,
however, these sources are currently being used to synthesize two-qubit polariza-
tion quantum states, with a variable degree of entanglement and purity [26]. The
question then becomes how do we characterize the entanglement in such systems.
In the current work such states are being characterized by quantum state
tomography which allows the reconstruction of the reduced density matrix for
the polarization entangled photons [26, 27]. Hence one can determine all the
physically relevant properties such as the degree of entanglement and purity. The
process to reconstruct the density matrices requires many more measurements
than those required to violate a Bell inequality.

This article is structured as follows. We begin by de� ning how to characterize a
two qubit-state in terms of its degree of entanglement and degree of mixture. We
then proceed to specify the particular Bell inequality considered here. At this point
we comment again that we are interested in tests that can be performed on a single
entangled pair of qubits (primarily because this is physically currently). There are
a number of possible measurements that can be performed but here we restrict our
attention to POVMs (positive operator valve measure). We will not consider
generalized measurements. Given these tools we now examine the degree of
violation versus the degree of entanglement for two classes of states; the Werner
state [20] and the maximally entangled mixed state [28]. We will attempt to answer
the question as to ‘what the Bell inequality indicates about the nature of
entanglement?’. Is it only weakly entangled states that do not violate such
inequalities?

In examining the degree of entanglement there are currently a number of
measures available. These include the entanglement of distillation [6], the relative
entropy of entanglement [29] but the canonical measure of entanglement is called
the entanglement of formation (EOF) [6] and for a pure state is simply given by the
von Neumann entropy [30] of that reduced density matrix. For a mixed state »̂» the
entanglement of formation is de� ned as,

EF…»̂»† ˆ min
X

i

piEF…Á†; …1†

where this minimum is taken over all the possible decompositions of »̂» into the
pure states »̂» ˆ

P
i pijÁiihÁij. The entanglement of formation for an arbitrary two-

qubit system has been found by Wootters [13] to be simply given by
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where h…x† is Shannon’s entropy function,

h…x† ˆ x log …x† …1 x† log…1 x†; …3†
and ½ is the tangle [31] (concurrence [15] squared). The tangle ½ is given by,

½ ˆ C2 ˆ maxf¶1 ¶2 ¶3 ¶4; 0g‰ Š2: …4†
where the ¶s are the square root of the eigenvalues in decreasing order of,
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Here »̂»¤ denotes the complex conjugation of »̂» in the computational basis
fj00i; j01i; j10i; j11ig. With the entanglement of formation EF being a strictly
monotonic function of ½, the maximum of ½ corresponds to the maximum of EF .
Hence the tangle may also be considered a direct measure of the degree of
entanglement and this is what we will consider in this article. In general the
measure of entanglement to be used depends heavily on the desired use of that
information. The entanglement of distillation may be a much more useful practical
measure but it is di� erent to calculate in practice. In general the entanglement of
distillation is smaller than entanglement of formation.

For a general two-qubit density matrix the purity of the state provides
complementary information about the state. The purity measure described here
is the linearized entropy [32] of »̂» given by

SL ˆ
4
3

1 Tr »
2£ ¤© ª

: …6†

The 4=3 normalization [26] for SL ensures that for a general two-qubit density
matrix SL ranges between 0 and 1. The von Neumann entropy [30] of the state
could be used but SL is easier to calculate and provides the same degree of
characterization. With an explicit expression for the degree of entanglement and
the degree of mixture let us now turn our attention to the Bell inequality and what
a violation of it potentially indicates about the nature of entanglement for the two
qubit system. There are a large number of Bell inequalities that could be
investigated in this article but we will focus our attention on the original two-
qubit Bell inequality [3-5],

BS ˆ E ¿1; ¿2… † ‡ E ¿1¿
0
2
¢ ‡E ¿

0
1; ¿2

¢
‡ E ¿

0
1; ¿

0
2
¢µ 2; …7†

where the correlation function E ¿1; ¿2… † is given by,

E ¿1; ¿2… † ˆ Tr ŜS1…¿1†ŜS2…¿2†»̂»
© ª

; …8†

with,

ŜSi…¿i† ˆ cos ¿i j0ih0j j1ih1j‰ Š ‡ sin ¿i j0ih1j ‡ j1ih0j‰ Š: …9†

The inequality (7) is violated if BS > 2. In the above expression the ¿is are the
analyser settings for the ith particle (i ˆ 1; 2). In calculating whether the Bell
inequality is violated, the choice of analyser settings is absolutely critical. In this
article we will choose them to maximize the violation for the actual state under
consideration.

It is now time to turn attention to the class of states considered in this article.
The Hilbert space in which two qubit reside is large and hence in this article we
will generally restrict our attention to two particular types of states. The � rst state
is of the form,

»̂»…®; ¹† ˆ
1 ®

4
I2 « I2 ‡ ®jªnonihªnonj; …10†

where,

jªnoni ˆ cos ¹j0ij0i ‡ ei¿ sin ¹j1ij1i: …11†
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For ¹ ˆ º=4 eqn (10) is of the form normally attributed to the usual Werner state
[20] which was the � rst state found to be entangled for certain ® and yet not violate
a Bell inequality for single states.

We will refer to the state (10) as a non-maximal Werner state as it is a mixture
of a non-maximally entangled state and the fully mixed state. In the limit of ® ˆ 1
equation (10) represents a non-maximally entangled pure state. It is straight
forward to show that the mixture of the non-maximally entangled state and the
fully mixed state given by (10) is entangled only when,

® >
1

1 ‡ 2j sin 2¹… †j …12†

(for the Werner state it is entangled for ® >
1
3 [8, 33]). It is also possible to derive an

explicit expression for the degree of entanglement for such states using the tangle
measure. While it is quite complicated one can show that the tangle for the state
(10) is given by,

½ ˆ maxf
������
¤1

p ������
¤2

p ® 1
2 ; 0g

µ ¶2

; …13†

where,

¤1
2

ˆ §4®j sin 2¹… †j
������������������������������������������������
1 ‡ ®… †2 4®

2 cos2…2¹†
q

‡ 1 ‡ ®… †2 4 ®
2 cos…4¹†: …14†

The second state considered is the maximally entangled mixed state recently
predicted by White et al. [26]. This states has the explicit form,

»̂»mems ˆ

g…®† 0 0 ®
2

0 1 2g…®† 0 0

0 0 0 0

®
2 0 0 g…®†

0

BBBBBB@

1

CCCCCCA
; …15†

where,

g…®† ˆ
®=2 ® ¶ 2=3

1=3 ® < 2=3

(

; …16†

and has been shown to have the maximal amount of entanglement for a certain
degree of mixture (as measured by linear entropy) or vice versa. This state is
entangled for all nonzero ® and in fact it has been shown that the tangle simply
given by

½ ˆ ®
2
: …17†

For a given degree of mixture, the maximally entangled mixed state is generally
signi� cantly more entangled that the Werner state at the same degree of mixture.

Let us now examine how well these two state violate a Bell inequality. The state
(10) violates the Bell inequality (7) for quite a wide range of ®; ¹ values. In � gure
(1) the maximum value of BS (optimizing the analyser settings to maximize the
violation) is presented against the degree of entanglement (as measured by the
tangle). Two speci� c parameter sets are plotted
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. the non-maximally entangled pure state »̂»…1; ¹†;

. and the Werner state given »̂»…®; º=4†.

This result shows very clearly that the Werner state (given by the density
matrix »̂»…®; º=4†) and the non-maximally entangled pure state (given by the density
matrix »̂»…1; ¹†) violate the Bell inequality by di� erent amounts for the same degree
of entanglement. In fact for these two di� erent classes of entangled states, there is
a clear region where one of the states (the non-maximally entangled pure state)
violates the Bell inequality but the Werner state does not [19]. This was a
surprising result when it was � rst found by Popescu [19]. It showed that not all
entangled states violate a Bell inequality. All pure two-qubit entangled states do
violate a Bell inequality [34] and in fact the degree of violation is equal to 2

�������������
1 ‡ ½

2p

[35]. However as a state becomes mixed it is harder to violate the Bell inequality.
The Werner state does not violate our Bell inequality if its tangle is less than

½ µ 1=3 (EOF ˆ 0:44229). This is quite a small degree of entanglement and has led
to the perception that it is only certain weakly entangled mixed states that do not
violate the two-qubit Bell inequality. To investigate this point further consider the
maximally entangled mixed state described in (15). This state has it degree of
entanglement maximized for a given purity and vice versa.

In � gure (1), curve c plots the degree of violation of the Bell inequality versus
the tangle for this maximally entangled mixed state. It is observed in this � gure
that signi� cantly more entanglement is required to violate the Bell inequality to the
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Figure 1. Plot of the maximum violation of the spin Bell inequality versus the degree of
entanglement (tangle ½ ) for the non-maximally entangled pure state represented by
the density operator »̂»…1; ¹† (curve a) and the Werner state represented by the
density operator »̂»…®; º=4† (curve b). The analyser settings have been chosen to
maximize the violation for the particular ®; ¹ values. A violation of the spin Bell
inequality is achieved when jBSj > 2. Also shown in the � gure are the results for the
maximally entangled mixed state (curve c).



same degree for the maximally entangled mixed state than for the Werner state. In
fact our Bell inequality for the maximally entangled mixed state is only violated if

½ > 0:64 (EOF ˆ 0:721928). This is a signi� cant degree of entanglement given that
a Bell state has ½ ˆ 1:0 (EOF ˆ 1:0) and a separable state has ½ ˆ 0:0 (EOF ˆ 0:0).
The maximally entangled mixed state considered here has a maximal degree of
entanglement for a given linear entropy (the choice of degree of mixture in this
case). There are other choices for the degree of mixture, not based on purity, and
these may have a tangle value ½ > 0:64 while still not violating Bell inequality. This
is left for further investigation.

The result above also tentatively indicates that the more mixture contained in a
state, the higher the degree of entanglement required for it to violate the two-qubit
Bell inequality. These results indicate that if a state has a certain degree of
entanglement (this may be large), it is not possible to infer whether that state
will violate the Bell inequality or by how much. This is, we believe, the � rst
instance where it has been explicitly demonstrated via quanti� able measures that
the size of the violation of the Bell inequality for an unknown two-qubit state is not
absolutely related to the degree of entanglement in that state.

Let us now investigate in some detail the e� ect of mixture of our entanglement
and the Bell inequality question. Again we will examine two speci� c states, the � rst
being the non-maximally entangled Werner state. We choose this state as it has the
property that with the two parameters ®; ¹ we can change the state from a non-
maximally entangled pure state to the Werner state. It is known that the non-
maximally entangled pure state ® ˆ 1 violates the Bell inequality as soon as the
state contains entanglement (¹ 6ˆ 0)[34]. However, the Werner state (with ¹ ˆ º=4
violates the Bell inequality only when ½ >

1
3. We will investigate what occurs

between these two extremes. The second state examined is a modi� cation of the
maximally entangled mixed state,

»̂»m…®; ¹† ˆ …1 ®†j0ij1ih0jh1j ‡ ®jªnonihªnonj; …18†
and is a mixture of the non-maximally entangled pure state and the diagonal
density matrix element j0ij1ih0jh1j. As for the � rst state mentioned the two
parameters in this state also make it possible to change its behaviour for a non-
maximally entangled pure state to the maximally entangled mixed state. Choosing
the parameters ® and ¹ such that both states (10) and (18) are a non-maximally
entangled pure states that just satisfy the Bell inequality (that is BS ˆ 2) we vary
the parameters ®; ¹ such that the degree of mixture is increased in the system while
maintaining BS ˆ 2. For these new ® and ¹ values the degree of entanglement and
mixture is then determined ensuring that BS ˆ 2.

In � gure (2) on the tangle-linear entropy plane, the boundary curve is plotted
where BS ˆ 2 for both states. The tangle axis (y-axis) represents the degree of
entanglement while the x-axis displays the degree of mixture. Figure (2) con� rms
for these states the idea that as the state becomes more mixed, more entanglement
is required to violate the Bell inequality. If we again examine the state (10) then
points for this state that fall below the curve (a) in � gure (2) are entangled (if ½ > 0)
but do not violate the inequality considered.

To summarize, in this article we have investigated the extent to which the Bell
inequality may be considered a measure of entanglement. Results indicate that the
more mixed a system is made the more entanglement is generally required to
violate the original Bell inequality to the same degree. We have speci� cally
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illustrated an example where a state (the maximally entangled mixed state) has a
tangle of ½ ˆ 0:64 which represents a signi� cant degree of entanglement (an
EOF ˆ 0:72) yet does not violate the Bell inequality considered here. This dispels
the impression that it is only weakly entangled states that do not violate the Bell
inequality. For a speci� c class of state, for instance the Werner state, it is clear that
as the degree of entanglement increases, so does Bmax and hence the potential
violation. However, without full knowledge of the state being analysed and given
that the two-qubit state has a certain degree of entanglement, it is impossible
generally to determine the extent to which the Bell inequality is violated (or for a
small degree of entanglement if it is violated). In terms of � nding other more
generalized Bell inequalities that are violated, the maximally entangled mixed state
is a good test candidate. To � nish, however, the knowledge that the Bell inequality
is violated is strong evidence for the presence of entanglement in the two-qubit
system. The Bell inequality can always be seen as a marker for entanglement.
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Figure 2. Plot of the degree of entanglement versus linear entropy for the states (10)
and (15). The Werner state is displayed as a dotted line while the MEMS state (15)
is displayed as the solid dark curve. The tangle ½ of the Werner and MEMS state
increases as the system becomes less mixed. The non-maximally entangled pure
state may be represented by a line along the y-axis at a linear entropy of SL ˆ 0.
The non-maximally entangled pure state satis� es the Bell inequality (BS ˆ 2) at
½ ˆ 0. Curve (a) traces out the curve for the state (10) where ® and ¹ are chosen such
that BS ˆ 2. Curve (b) traces out the curve for the state (18) where ® and ¹ are
chosen such that BS ˆ 2. In all situations here the analysers setting were chosen to
maximize the potential violation.
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