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Cascaded second-order nonlinearity in an optical cavity
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PACS. 42.50−p – Quantum optics.
PACS. 42.65Ky – Harmonic generation, frequency conversion, parametric oscillation, and para-

metric amplification.
PACS. 42.65Pc – Optical bistability, multistability, and switching.

Abstract. – Phase-mismatched optical second-harmonic generation in a low-loss external en-
hancement cavity is used to generate an effective third-order nonlinearity for continuous-wave
laser radiation. The threshold for optical bistability is calculated. The cascading effect is
demonstrated by detecting bistability of the line shape of a low-loss monolithic MgO:LiNbO3

resonator pumped by a Nd:YAG laser. The simplicity of cascaded χ(2) resonators makes the
method particularly promising for quantum optics.

Third-order optical nonlinearities are of importance for both applied and fundamental
research: in signal processing and communications it is for their potential to realize all-optical
switching [1], whereas in the field of quantum optics they may be employed to manipulate
the quantum fluctuations of light, in particular to generate nonclassical states of light [2]
and perform quantum nondemolition measurements [3]. Central to these applications is the
search for materials exhibiting large nonlinearities; in addition they must be environmentally
stable and resistant to optical power. For quantum-optical use the media must also have a
large ratio of nonlinearity to loss in order to suppress the influence of vacuum fluctuations. A
variety of χ(3) media has been investigated, including vitreous silica, semiconductors, organic
compounds, atomic beams, and cold atoms [2], [3]. Because of the limitations (complexity,
stability) of these systems, the possibility [4] of using well-known second-order nonlinear
materials for the same purposes has sparked a new direction of research [5]. A number of
studies [6] have discussed or demonstrated various aspects of cascading effects in second-
harmonic generation. All experiments reported up to date were performed in single-pass
geometry, using pulsed lasers with high peak intensities to obtain sufficiently large responses.

The purpose of this letter is to show that cascaded second-order nonlinearities can be used
to control low-power, continuous-wave light via optical bistability [7], occurring in phase-
mismatched second-harmonic generation in a low-loss optical cavity [8](1).

We derive the response of a cascaded χ(2) nonlinear optical cavity (fig. 1) by first considering
the propagation equations for the electric-field envelopes A1, A2 of the Gaussian waves of
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(1) Bistability can occur in detuned χ(2) resonators also for perfect phase match: in doubly resonant
SHG, an effective Kerr nonlinearity is predicted to occur if the harmonic wave is significantly detuned
from resonance (see [9]); in pump-resonant parametric oscillation bistability has been observed by
[10].
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Fig. 1. Fig. 2.

Fig. 1. – Schematic of cavity considered for resonantly enhanced cascaded second-harmonic genera-
tion.

Fig. 2. – Phasor diagram of the evolution of the fundamental and harmonic electric-field amplitudes
A1, A2 along the medium under phase mismatch ∆kL = 2π. The harmonic field at the end of
the medium, A2(L), is zero, while the fundamental one has experienced a cascaded phase shift
(A1(L)−A1(0) is imaginary) and nearly zero loss. A1(0) is taken as real. The points are at intervals
of L/5 along z.

frequency ω and 2ω in the nonlinear medium [11],

dA1(z)
dz

= i
κ

2
u∗(∆k, z)A∗1(z)A2(z) ,

dA2(z)
dz

= i
κ

2
u(∆k, z)A1(z)2 . (1)

The inclusion of a finite wave vector mismatch ∆k = k(2ω)−2k(ω) in the function u(∆k, z) =
exp[i∆kz]/(1+ i(z−L/2)/zr) is central to the following discussion. u also describes the effects
of focusing [12]. The Rayleigh ranges of the fundamental and harmonic waves are taken as
equal, zr = nω w2/2c, since the difference between their indices of refraction remains small
even for large ∆k, nω ' n2ω ' n. w is the fundamental wave waist at the focus, located at
z = L/2. κ ∼ χ(2) is the nonlinear coefficient. The field envelopes and their powers are related
by P = |A|2π zr/2µ0n, µ0 being the vacuum permeability.

Since the continuous-wave fields of interest here are weak, it is sufficient to integrate eq. (1),
with the initial condition A2(0) = 0 over the length L of the medium to second order in κ,

A1(L)−A1(0) = −(κL/2)2K|A1(0)|2A1(0)/2 , A2(L) = i(κL/2) I A1(0)2 . (2)

The dimensionless coupling coefficients are K(∆kL) = 2
∫ L

0

∫ z
0
u∗(∆k, z)u(∆k, z′)dz′dz/L2

and I(∆kL) =
∫ L

0
u(∆k, z)dz/L, related by ReK = |I|2. The evolutions described by

expressions (2) are pictorially represented in fig. 2. The subharmonic field envelope at the end
of the medium, A1(L), has experienced both a nonlinear loss, i.e. second-harmonic generation
(∼ ReK), and a nonlinear phase shift, ∼ ImK. The latter is an effective Kerr nonlinearity
resulting from the cascaded χ(2) nonlinearity. The harmonic-wave amplitude is always nonzero
on average inside the medium, but for the values ∆k = ±2πm (assuming weak focusing,
zr À L) it decreases to zero at its end, resulting in zero net harmonic power leaving the
medium.

Figure 3 shows the dependence of K for weak focusing. The dispersive and absorptive parts
of K resemble those of an atomic transition response. However, a χ(2) material is distinguished
by the notable difference that the absorptive part exhibits discrete zeros at which the dispersive
part is finite and large.



            

A. G. WHITE et al.: CASCADED SECOND-ORDER NONLINEARITY ETC. 427

Fig. 3. Fig. 4.

Fig. 3. – Calculated phase mismatch dependence of the conversion coefficient ReK, the nonlinear
phase shift coefficient ImK, the normalized bistability threshold p, and the cavity detuning at threshold
δth. Plane-wave mode geometry is assumed.

Fig. 4. – Phase matching curve for second-harmonic (SH) generation. Double-pass: total SH power
leaving the crystal through the AR side; one-way: fraction of SH power generated on the first half of
the round trip and transmitted through the nominally high-reflectivity mirror. Mode matched input
1064 nm power was 33 mW. Lines are guides for the eye.

Two central aspects arise in implementing an intra-cavity cascaded χ(2) nonlinearity. First,
the nonlinear phase shift is enhanced by resonating the subharmonic wave ω. Second, the
nonlinear phase shift has a significant influence when it is on the order of the round-trip
propagation phase shift corresponding to a detuning by one cavity linewidth, which is small
for a low-loss cavity. As both the enhancement and the relative magnitude scale inversely with
cavity losses, these play a crucial role. For a quantitative description we consider a cavity
as in fig. 1 for which the dynamics of the intracavity envelope α =

√
τA1(0) (τ is the cavity

round-trip time) is easily obtained by imposing a self-consistency condition for it at the input
coupler mirror [9]. The result is

α̇ = −
[
γ + iδ +

µ

2
K |α|2

]
α+

√
2γcαin . (3)

Here, µ = (κL/2τ)2 is the interaction strength, αin = A1,in is the external input field, and δ
is the detuning between ω and the cavity resonance frequency. The coupling and total decay
rates for the intracavity field are defined as γc = Tm/2τ, γ = γc +S/2τ , respectively, where Tm

is the input mirror transmission and S are any linear round-trip losses. In the above equation,
the pure-SHG part of the χ(2)-interaction, ReK, represents an intensity-dependent loss, which
leads to power broadening of the cavity linewidth. The Kerr phase shift term ∝ ImK results
in an intensity-dependent detuning of the cavity mode and a distortion of the lineshape of the
cavity resonance. Optical bistability is reached when the linear (δ) and nonlinear detunings
are of opposite sign and the latter is large enough. The threshold input power required (P th

in )
is found by solving eq. (3) in the steady-state case under the condition of infinite slope in the
cavity lineshape, (d|α|2/dδ)−1 = 0,

P th
in =

Tm + S

Tm

(Tm + S)2

4ΓSHG
Max(ReK)p(∆kL), p(∆kL) =

8
3
√

3
|K|2

(|ImK| −
√

3ReK)3
. (4)

In eq. (4) we have recast the bistability power scale in terms of measurable parameters, ΓSHG
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being the power conversion coefficient for SHG at the peak of the phase matching curve, where
ReK takes on its maximum, ΓSHG = 2µ0 nµ τ

2 Max(ReK)/π zr. Recalling for comparison that
the 2ω threshold power required to achieve parametric oscillation is (Tm +S)2/4ΓSHG, we note
that the bistability power at ω is ' p times larger. Thus, the bistability power scales as the
square of the ratio of second-order nonlinearity χ(2) and total cavity loss Tm + S.

An important result contained in eq. (4) is that cascaded bistability can only occur for
wave vector mismatches such that |ImK| >

√
3ReK. Figure 3 shows the dependence of the

normalized threshold on ∆kL, assuming a weakly focused resonator mode. The threshold is
minimum near ∆kL = ±2π, where the SHG efficiency ReK vanishes. For large wave vector
mismatch the threshold power increases approximately linearly with |∆kL|. Also indicated in
fig. 3 is the detuning δth = δ(Pin = P th

in ) = −sgn(ImK) (
√

3|ImK|+ ReK)/(|ImK| −
√

3ReK)
at which the vertical slope of the cavity lineshape occurs. Note that δth has the same sign as
the wave vector mismatch.

For the experimental demonstration of the cascaded χ(2) nonlinearity with continuous-wave
light, special attention must be paid to achieving small cavity losses and large nonlinearity. We
have selected the well-tested crystal MgO:LiNbO3 as the nonlinear medium since it exhibits
a large χ(2) for SHG of 1064 nm (ω) radiation as well as low bulk absorption and scatter
loss. The wave vector mismatch ∆kL is controllable by varying the temperature (T ) of
the crystal relative to the phase matching peak at about 108◦C, with a tuning coefficient
∂∆k/∂T = 7.5 rad/(cm K). The optical cavity is a miniature monolithic standing-wave cavity
whose mirrors are dielectric coatings deposited directly on the 10 mm radius convexly polished
end faces of the 7.5 mm long crystal. The cavity mode is thus confined entirely within
the crystal. From the measured finesse and the on-resonance reflectivity a round-trip loss
S = 0.3% and a mirror transmission Tm = 0.33% at 1064 nm are deduced. The input mirror
is antireflection coated for 532 nm. The back mirror is highly reflective at both 532 nm and
1064 nm. The pump wave ω is provided by a tunable, single-frequency Nd:YAG laser.

Figure 4 shows the temperature dependences of the 532 nm harmonic power generated on
the first half and over the full distance of the round trip inside the cavity. We remark that the
efficiency curves differ from the theoretical behaviour ([13], cf. also ReK in fig. 3) for several
reasons: for the input power level used, the harmonic output power is not strictly proportional
to ReK; temperature inhomogeneities within the crystal are present; and, a differential phase
shift between the fundamental and harmonic waves occurring at the high reflector leads to
significant interference effects [14]. The presence of these is visible from the substantial
difference between the one-way and round-trip traces. Following the above plane-wave analysis,
the minimum bistability threshold is expected where the external conversion efficiency is near
zero. The measured round-trip SHG efficiency in fig. 4 exhibits near-zero minima, which are,
therefore, chosen as the operating points for the observation of the cascading effect. Note that
the round-trip conversion efficiency at the phase matching peak is ' 50%. A SHG coefficient
ΓSHG ' 2/kW is inferred from this result, leading to an estimated minimum bistability power
on the order of 45 mW, assuming the plane-wave result to be applicable.

Figure 5 i), ii) show the behaviour of the line shape of the cavity mode at high input power
(125 mW) as the laser is detuned back and forth. The data was obtained by recording the 1064
nm power transmitted through the nominally highly reflecting mirror, which is proportional to
|α|2. A fast laser frequency scan (12 MHz/ms) is used so as to attenuate the influence of thermal
effects, where absorption of circulating power and resulting heating and expansion of the cavity
causes leaning to negative detuning, irrespective of crystal temperature and ∆k. As a baseline
scan, fig. 5 i) shows the lineshape when the doubler is operated at room temperature where the
phase mismatch is extremely large. With the crystal temperature adjusted for maximum SHG
efficiency, a significant broadening due to the conversion loss µReK|α|2/2 and a corresponding
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Fig. 5. – Lineshapes of the TEM00 resonator mode. i) no cascaded nonlinearity: T = 30◦C, zero
nonlinear loss; T = 107.49◦C, large nonlinear loss ReK causing line broadening; ii) no nonlinear loss:
T = 107.1◦C, positive wave vector mismatch; T = 109.3◦C, negative wave vector mismatch. 1064 nm
input power was 125 mW. The distinctly different forward and backward scans in ii) are evidence for

optical bistability due to a cascaded χ(2) nonlinearity. Line positions are arbitrary.

reduction in circulating subharmonic power occurs; no significant asymmetry is observed,
however. The observed broadening factor is consistent with the nonlinearity ΓSHG and the
cavity losses. With the temperature changed slightly from the phase matching peak so as to
give nearly zero double-pass conversion efficiency (see fig. 2), the scans change dramatically
as shown in fig. 5 ii). At the high input power level used the scans display hysteresis and
are strongly asymmetric, leaning towards opposite detuning for opposite temperature change,
i.e. wave vector mismatch, in agreement with the prediction for δth. The data is consistent with
the cavity being driven above bistability. The fact that line asymmetry is observed for both
positive and negative wave vector mismatch at opposite detunings represents clear evidence
that an effective Kerr nonlinearity due to cascaded second-order nonlinearity is at work. Small
thermal effects are still present, as can be seen from the fact that the bistability is greater for
negative wave vector mismatch. In the scans shown in fig. 5 ii), harmonic-power production
was minimal (a few mW), which is also borne out by the fact that the peak subharmonic
circulating power was nearly the same as for the cold cavity (fig. 5 i)). The quantitative
agreement between the input power required to reach bistability and the prediction of eq. (4)
is satisfactory, considering that the double-pass phase matching curve of fig. 3 shows that the
assumptions of a homogeneous nonlinear material and the absence of interference effects are
not satisfied for the present resonator.

An undesired effect arising in this study is subharmonic-pumped parametric oscillation
(SPO) [15]. This occurs when the average harmonic field 2ω in the nonlinear medium is
sufficiently large to act as a pump wave for the generation of resonant nondegenerate signal
and idler waves. The theoretically calculated subharmonic threshold power for SPO can be
less than the bistability power P th

in , even when ReK = 0: for this device SPO was observed
at subharmonic input powers above 40 mW. For SPO to occur, the nondegenerate signal and
idler waves must be resonant with sufficiently small detuning. It is possible to avoid SPO
by carefully varying the operating temperature of the resonator and frequency of the laser,
so that only the subharmonic is resonant and there are no suitable frequencies at which the
idler and signal waves can resonate. However, this becomes increasingly difficult with higher
subharmonic power.

In conclusion, we have presented a method for obtaining a χ(3) continuous-wave nonlinear
optical system by means of temperature-detuned second-harmonic generation in a crystal. It is
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simpler than continuous-wave methods based on atomic media. Furthermore, a large variety
of nonlinear solid-state media is available that covers a very large spectral range; indeed,
even media that are not phase-matchable for SHG may be used, since cascading is effective
even for relatively large phase mismatch due to the linear, rather than quadratic, dependence
of the bistability threshold on ∆k. Since several cavity quantum-optical effects, such as
squeezing [16], quantum nondemolition measurements [17], and noise-free amplification [18],
have been predicted assuming self- or cross-Kerr interactions [19], an important extension of
the present work is the demonstration that cascading can lead not only to a self-interaction,
as studied here, but also, in phase-mismatched sum-frequency generation or type-II SHG, to
an effective cross-Kerr coupling between two waves of different wavelength or polarization,
respectively [20].
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sions. Financial support has been provided by ESPRIT LTR Project 20029 ACQUIRE and
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Additional Remark. – After the paper was refereed, we became aware of an experimental
study (Ou Z. Y., Opt. Commun., 124 (1996) 430) of c.w. cascaded phase shifts. Bistability
was not reached, however.
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