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Abstract

This thesis describes an experimental and numerical investigation of control of an

autonomous Lorenz–like chaotic laser system. Any chaotic system has an attractor

which defines how the dynamics evolves, and it contains a number of unstable periodic

orbits. Stabilising one of these leads to predictable periodic oscillations as it is known

that if one of the unstable periodic orbits is stabilised then the system is globally

stable.

Two different control methods have been studied. A parametric perturbation

method is considered where a sinusoidal modulation is applied to the pump power of

the laser. Control well above the threshold had never been previously observed in this

laser, contrary to expectation. Careful experimental and numerical studies presented

here show that not only is control possible with modulation at a frequency near the

average chaotic pulsation frequency, but control to various periodic states emerged

during appropriate conditions.

The second method of control investigated here is based on the delayed feedback

method introduced by Pyragas. An error signal is generated from the difference

between a signal and its value delayed in time, and this difference is fed back to

modulate a system parameter. Control to various periodic states, and the steady

state, had previously been observed in the ammonia laser, and was confirmed by
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x Abstract

the author numerically and experimentally. Detailed numerical studies support and

extend the experimental results, and are used to explore the effects of varying the

feedback delay over several pulse periods. An additional loop delay is introduced to

allow for the fact that the difference signal takes some time to be fed back into the

system in the ammonia laser. Control can be achieved for delays of several pulsation

periods.

A simpler version of the Pyragas method is also investigated where only the de-

layed signal is used as the feedback. Control to periodic states, and to steady state,

is found with a similar accessible range of dynamics as with the original Pyragas

method. Both feedback versions of control can be thought of as self–synchronisation

of the system variables with their previous values.

The effect of bandwidth of the feedback is modelled numerically using the complex

Lorenz equations. The chaotic dynamics is still controlled even if the bandwidth is

slightly less than the average pulsation frequency of the chaos.

Finally the question of difficulty of control is addressed, and synchronisation is

used to help determine the location of the controlled dynamics in parameter space.
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1
Introduction

A system is chaotic if its dynamics is bounded but it has sensitive dependence to

initial conditions. This means that two initial points separated by an infinitessimal

amount will follow each other for a time, after which they become uncorrelated. The

dynamics is not repeated after a finite time, but nor is it random since the dynamics

is described by a particular set of rules which are deterministic. A system can only

lack repeatability if the evolution or trajectories of individual points do not cross one

another. This can only happen if the system is embedded in at least three dimensions.

If a system is described by at least three variables which are nonlinearly coupled to

each other, as is common in many physical systems, then chaos could emerge under

1
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appropriate conditions.

There are many situations in mechanical, electrical, optical, nuclear, chemical,

and biological systems where chaotic behaviour occurs, which is destructive or at

least increases inefficiencies in those systems. It may not be possible or convenient to

design out chaos in a system. If the chaotic dynamics could be replaced by simpler

regular dynamics then a more stable, and predictable system could be created. In

some cases it might be possible to improve the performance of a device by controlling

the initially chaotic dynamics. Examples would include increasing the output power

of an otherwise chaotic laser, or driving a mechanical device harder without destroying

it or something else in the process. To do this, an understanding of how a chaotic

system responds when various perturbations are applied is required. This has led

to much research in this area in many fields of engineering, science including the

biological sciences, and many cross–disciplinary fields. A deeper understanding of

chaotic systems has led to research where chaos can be considered a feature. Many

possible dynamical states can be accessed within a chaotic system if an appropriate

perturbation is applied.

Controlling chaos usually implies there is deterministic relationship between the

phase or amplitude of the controlled chaotic signal, and an applied perturbation

as time evolves. For periodic oscillators, the phenomenon of synchronisation has

been described as early as the 17th century by Huygens [2] (English translation [3])

where synchronisation was observed between pendulum clocks hanging on a wall. An

understanding of how periodic oscillators synchronise has given insights to explaining

how more complex dynamical systems such as chaos can be synchronised or controlled.

The term synchronisation has taken on a variety of meanings over the years. It has

ranged from complete agreement or correlation between the dynamics of two coupled

systems, to the weaker definition of correlation in time. Control of chaos can be seen

as a subset of synchronisation where the phase or amplitude of a chaotic variable
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becomes regular, and the phase difference between the two systems typically has a

constant value during control. Synchronisation of a chaotic system with an external

controller can lead to a correlation between the periods of the chaotic system, and

the controller, but the amplitudes may not be correlated. This type of behaviour may

persist for a particular range of a controller parameter [4]. Within this window there

is a narrow region where the amplitude dynamics is simplified and therefore controlled

[5]. Information about the location and width of the synchronisation region is useful

to estimate how well a particular chaotic system can be controlled. A narrower

synchronisation window will generally make control more experimentally difficult to

implement. Understanding the properties of synchronisation is important so that this

information can be used to estimate the location of the narrow control region within

the synchronisation window.

1.1 Mechanism of synchronisation and control

In periodic oscillators there are two different mechanisms of synchronisation [6]. The

first is frequency locking of the natural oscillation frequency to the external source

where the phase difference becomes constant. The second mechanism involves the

suppression of the natural dynamics of the system driven by an external signal. In

this case the frequency of the external source does not have to lie near the natural

oscillation frequency of the system to be controlled, as is typically the case with the

first method. Both these mechanisms have recently been extended to chaotic systems

in terms of synchronisation where the amplitudes of the periodic controller and the

system are not necessarily correlated [7].

Periodic oscillators can be easily frequency locked to an appropriate weak periodic

modulation, since the time scale is well defined with an extremely narrow distribution

of orbit periods, which is not the case in nonlinear systems [8]. The phase difference
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at integers n and m for the periodic oscillator, and the periodic modulation, each

with phases φ1, and φ2 respectively, will be θ = nφ1 −mφ2. This will be a constant

during perfect synchronisation or locking. The beat frequency is

θ̇ = ∆ω − C sin θ (1.1)

where ∆ω = nω0
1 − mω0

2 is the difference between the natural frequencies of the

oscillator and the periodic modulator, and C is the coupling strength. Frequency

locking is achieved when |∆ω
C
| ≤ 1 and this triangular region of the C–∆ω plane

is known as the Arnold tongue [4]. Perfect synchronisation is destroyed if noise is

present [8]. The above approach can be modified for the situation of synchronising,

or controlling a chaotic oscillator. The phase of a periodic oscillator is simple to

define because of the presence of well-defined regular motion. Each of the variables

of a chaotic oscillator has different irregular behaviour so it is not obvious which

variable should be used to determine the phase of the system, and in fact there is

no unique method to determine the phase of a chaotic variable [8] although the long

term behaviour is the same qualitatively for a sensible choice of phase. Three common

methods used to calculate phase are discussed in detail in section 3.3, and the phase

is calculated here using the times of the amplitude peaks of the time varying intensity

pulsations. The dynamics of the phase is important as it contains information about

the state of synchronisation when compared to the phase of the external perturbation,

and is relevant for any chaos control method.

1.2 Stages of synchronisation

Perfect frequency locking or control corresponds to perfect synchronisation between

the dynamics of the system and an applied modulation, and is the first stage of

synchronisation. The second stage is commonly referred to as phase synchronisation
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where the average frequency of a system, and the applied modulation are identical.

There are no phase slips, however the amplitudes of the system variable and the

modulation are generally uncorrelated. In the third stage of synchronisation, only

the average frequencies are identical, but positive and negative phase slips occur so

there is usually no phase, or amplitude correlation between the system dynamics, and

the applied modulation. This stage is known as weak synchronisation.

The transition route to the weak synchronisation state, from an unsynchronised

state was recently discovered by Boccaletti [9]. There is perfect synchronisation for

a particular modulation frequency νc. As the frequency is shifted away from νc and

hence synchronisation, control is lost momentarily as phase slips develop. The average

time between successive phase slips is

ln
1

τ
≈ |ν − νc|−1/2 (1.2)

and is initially large, slips becoming more frequent as |ν − νc| increases. This is

known as super long laminar behaviour [9]. The phase slips become more regular as

ν increases to the point where the times between successive phase slips are almost

equal [9], and the associated dynamics is called periodic phase synchronisation. As the

frequency increases further a transition is reached where the time between successive

phase slips follows a type 1 intermittency scaling law [10]

τ ≈ |ν − νc|−1/2 (1.3)

which corresponds to the same scaling law describing time between phase slips in

forced periodic oscillators. Phase synchronisation was first observed in mutually cou-

pled [11] or periodically forced chaotic oscillators [12], which were extensively studied

in theoretical models [13, 14], and experiments [15–17]. Phase synchronisation is im-

portant in many physiological systems. One example is the synchronisation which can

occur between the human heartbeat and the respiratory system. This was shown for
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the first time by Schafer et al. [18], and is also seen in magnetoencephalography and

electromyography of Parkinsonian patients where the time evolution of the periph-

eral tremor rhythms indicates synchronisation between cortical motor areas [19], and

electroencephalograms during visual stimulation. Synchronisation occurs, followed by

desynchronisation which is necessary to proceed from one cognitive state to another

[20]. Information about the different stages of synchronisation for a particular system

can be useful to determine how well a system can be controlled. For applications

where the chaotic dynamics must be eliminated to give regular dynamics, phase syn-

chronisation will only partially control the phase of the chaotic system to the applied

perturbation in the sense that there are no phase slips, and the amplitude of the

resultant signal will generally be uncorrelated with that of the applied perturbation.

In this thesis the aim is to control not only the phase of the intensity pulsations, but

also the amplitude of a chaotic ammonia laser experimentally, and to model this pro-

cess numerically. The following discussion about different ways of controlling chaos

is summarised in a flow diagram in figure 1.1. Methods to control chaos fall into two

broad categories. Firstly there is state independent control where one or more of the

system parameters (or variables) is varied externally independently of the state of the

system. Secondly, there is control by delayed feedback where the system parameter/s

(or variable/s) is/are modulated by a signal which depends on the state of the system.

The state independent and delayed feedback control methods could either require a

detailed knowledge of a particular dynamical system and therefore require a set of

differential equations describing the system, or only basic knowledge of the system

such as the characteristic time of the system which does not require knowledge of the

equations. Both the state independent and feedback control methods can be devel-

oped either from a model independent or a model dependent superset. For simplicity

only the developments of the state independent case are shown in figure 1.1

In many applications a complete accurate set of differential equations describing a
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particular physical system may not be possible to generate within a reasonable time.

For this reason, experimentally there has been a strong emphasis in researching control

of chaotic systems without the knowledge of the equations of motion. The state

independent control method can take two possible paths. The applied modulation

can either be resonant or non resonant with the chaotic system.

1.3 Non-resonant control

A dynamical system ẋ = F (x, µ) with a bifurcation point µc, can be controlled if the

control parameter µ is varied close to µc. There is a structural change in the equation

once the bifurcation parameter is time dependent µ(t). The stability now depends on

time and the result is that the time of instability t∗ can be calculated [21]

∫ t∗

0

λ(τ)dτ = 0 (1.4)

and the associated value of the bifurcation parameter is µ(t∗). There exists a time

0 < t̂ < t∗ which corresponds to the static bifurcation point µ(t̂), so that µ(t∗) > µ(t̂).

The values of the eigenvalues are positive between times t̂ and t∗, but the global

dynamics is stable, so there appears to be an accumulation of stability of the negative

eigenvalues during 0 < t < t̂ which prevents the system becoming globally unstable

for t̂ < t < t∗. This is known as a delayed bifurcation. There are several theory [22, 23]

and experimental results for systems such as a loss modulated non autonomous CO2

laser [24], and an autonomous ammonia laser [25] which make use of this phenomenon

to stabilise a dynamical system. This has the obvious advantage that it is easy to do

and only knowledge of the bifurcation point is required, but stabilisation cannot be

achieved in this way for a control parameter significantly greater than the bifurcation

point.
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Chaos

Model
independent

Model
dependent

Control

State independent Feedback

Noise

Continuous Discrete

Poincare

OGY OPF

Error signal Non-error signal

Synchronisation

Control to period n
n > 0
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Periodic
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n > 0

Non-periodic modulation
     (Synchronisation)
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encryption

Non-resonant Resonant

Delayed 
bifurcation

Figure 1.1: Schematic of general methods of controlling chaos. The thick arrows indicate
the route to control used in this thesis.
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1.4 Resonant control

The simplest resonant control method is to apply a periodic modulation to a system

parameter (or variable). This is one of the control methods used here experimen-

tally in an optically pumped far infrared ammonia laser, and numerically in the

Lorenz–Haken laser model. This was first proposed in 1990 by Lima et al. [26]

who gave a theoretical treatment of the non autonomous Duffing-Holmes oscillator.

They found that a modulation amplitude of a few percent was required to control

the chaotic dynamics. Experimental evidence of this phenomenon was observed in a

chaotic magnetoelastic beam which can be modelled as a Duffing-Holmes oscillator,

and chaos was controlled for a modulation amplitude of around 10% [27]. Numerical

investigations of control in the Rössler and Lorenz systems were performed where the

control signal f(t) was written as f(t) = sin(ωt). Perfect synchronisation was found

in the phase coherent Rössler system [12] when the drive frequency was equal to the

main resonance ω0,
1
2
ω0, and 2ω0 corresponding to locking ratios of 1:1, 2:1, and 1:2

respectively. In the Lorenz system perfect phase synchronisation was found only for

very large modulation amplitudes, and for a locking ratio of 1:1 with 1:2 and 2:1 not

found [12]. The Lorenz system has relatively large variations in the dynamics of the

phase, resulting in a large distribution of orbit times. The parameters used in the

Rössler system correspond to a very narrow distribution of orbit times of the chaotic

system allowing perfect synchronisation to occur more easily. A CO2 laser with feed-

back producing homoclinic spikes was controlled [17] by periodic modulation with

amplitudes from 0.9% to 2% with a locking ratio of 1:1. Perfect control was achieved

only when corrections were made to the applied periodic modulation frequency. The

corrections were calculated using the average phase slip rate within a time interval

∆t which corresponds to a shift in frequency ∆ν = −a( ds
dt

)∆t, where s is the phase

difference between the laser intensity, and the modulation, and a is a suitable positive
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coefficient. The slip rate is updated each time interval so the modulation frequency

becomes

f(t) = ν0(t) +
∑

∆ν(t) (1.5)

which tends to ν0 as the phase slips become rarer and rarer.

More complex modulation signals can be used to control a system such as using

a prerecorded time sequence of chaotic pulsations as the perturbation [28], and a

prerecorded chaotic signal controlling the amplitude and phase of a chaotic ammonia

laser to the prerecorded signal [29]. This in itself is a large field which includes the

application of chaotic encryption [30], and the theory of synchronising non identical

systems [31]. Lastly it is possible to control a chaotic system by applying noise to a

system parameter or variable [32] and to induce order in lasers using quantum noise

[33]. State independent control methods applied to the chaotic ammonia laser are

discussed in Chapters 5 and 6.

1.5 Time delayed feedback control

The feedback control method falls into two classes, discrete, and continuous feedback.

One of the first control methods proposed in 1990 was discrete feedback using the

Ott, Grebogi, and Yorke method (OGY) [34]. This is discussed in detail in appendix

A. A perturbation is applied to the system whenever the state of the system is near

an unstable manifold whose position and properties have been calculated in some

detail. This information is used to generate the perturbation. The OGY method has

been experimentally implemented in a magnetoelastic ribbon [35].

There are many variations of the OGY method such as the occasional proportional

feedback method (OPF) developed by Hunt in 1991 [36] where a pulse is injected into

a chaotic system whenever a particular output of the system is within a window near
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a pre-assigned state. This is relatively efficient in highly dissipative systems where

the rate of contraction in phase space is so large that the attractor dynamics can be

represented as a one dimensional map in two coordinates. These types of feedback are

discrete for both discrete and continuous systems. The OPF method was implemented

in an autonomously chaotic solid-state laser operating in a relatively high dimension

[37], and the unstable steady state was stabilised in a chaotic multimode Nd:YAG

laser with an intracavity nonlinear KTP (titanyl potassium phosphate) crystal [38].

There are other similar control schemes such as recursive proportional feedback (RPF)

[39].

Control by continuous delayed feedback is more widespread in nature and in self–

evolving systems due to the inherent continuity of time. The delayed feedback signal

may contain an error signal as developed by Pyragas [40] which tends to zero as

the system approaches control. A chaotic analog circuit was controlled by feeding

an error signal generated by the circuit back into the circuit [41]. Alternatively the

delayed feedback signal may not go to zero, but the feedback system may effectively

become part of a new dynamical system which has simpler dynamics. Both methods

have been explored by the author in the ammonia laser, and in the Lorenz–Haken

laser model, and are discussed in Chapter 7. There are other continuous feedback

schemes such as the adaptive proportional feedback (APF) [42] which is a continuous

version of OPF. The Pyragas control method has also been modified to allow for

drift occurring in the positions of either the unstable steady state, or the unstable

periodic orbit and is then called dissipative feedback control (DF) [43]. The Pyragas

method can also be used to control to steady state if the feedback is non perturbative

[43, 44], as observed in a class B laser [45], and in a frequency doubled Nd:YAG laser

[46]. Time delayed feedback control can only stabilise orbits with short periods or

small Lyapunov exponents [47], but this is overcome by including multiple delays [48]

rather than just a single delay.
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1.6 Controlling chaos in the ammonia laser and in

the Lorenz–Haken model

The main aim in this thesis is to investigate methods of control in a laser system

which can be described by the Lorenz–Haken equations. Most experimental results

mentioned in the preceding sections have been obtained from non autonomous chaotic

systems. There are relatively few control results on autonomous systems, and there

are only results by Dykstra [49] on controlling a single mode autonomous laser that

the author is aware of. A chaotic system can be expected to be controlled in theory,

but there are many issues which may hinder the possibility of obtaining control in a

real system. Each chaotic system has its own characteristic time scale, which has some

spread in the time distribution. Control is more easily achieved for a narrower time

distribution as discussed in section 1.1, so the first question is: is control possible,

and can it be achieved easily in an autonomous single mode laser system? What

type of controlled dynamics can be generated in the laser, and how does this compare

with the model? Synchronisation is also a predicted phenomenon in chaotic systems,

so how does this manifest itself in the laser system, and how is control related to

synchronisation? These questions are addressed by the author in this thesis.

The next chapter will briefly introduce a number of concepts in the theory of

chaotic dynamics which are applied in the experimental and theoretical work de-

scribed in subsequent chapters. Chapter 3 deals with the Lorenz equations, and the

particular form which can be used to model the dynamics of the ammonia laser system

on which experiments have been performed. Chapter 4 deals with the experimental

apparatus, and some data used to show the existence of chaos in the ammonia laser.

The subsequent chapters describe several ways in which chaotic dynamics in the am-

monia laser have successfully been controlled. In particular Chapter 5 and 6 deal

with control by periodic modulation experimentally, and numerically respectively.
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model 13

Chapter 7 discusses two delayed feedback methods, subtractive, and non subtrac-

tive, both experimentally, and numerically. Finally, Chapter 8 deals with chaotic

synchronisation.
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2
Invariant properties of chaos

2.1 Chaos: Irregular non-periodic dynamics

This chapter will briefly introduce a number of concepts in the theory of chaotic

dynamics which are applied in the experimental, and theoretical work described in

subsequent chapters.

Irregular behaviour is very common in physical systems and for centuries the

philosophy used in attempting to understand such systems was based on oversimplified

linear methods. This effectively assumes a system can be decomposed into a set of

independent periodic harmonic oscillators, or modes. The complexity of the dynamics

15
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could be increased by adding more modes to the system. To describe turbulence or

chaos by this approach would require an infinite number of modes. The dynamics

can be represented by a set of differential equations

ẋ = Fµ(x(t)) (2.1)

where x is a vector, and µ is a parameter which can change the complexity of the

dynamics from low to high as µ is increased. In particular there may be a critical

value of µ = µc where the dynamical behaviour asymptotes to a new regime which fills

a different region of space and is known as an attractor. The attractor is embedded in

phase space which is space spanned by the system variables. The point µc is called a

bifurcation point if there is an abrupt change in dynamics as µ changes from µc− ε to

µc + ε for small ε. The equations of motion may sometimes be solved analytically but

if the system is in a non–equilibrium or irregular state, analytic methods fail because

they tend to assume periodic oscillatory solutions. Oscillatory solutions can be used

to solve the differential equation in principle, but non–periodic solutions would require

an infinite Fourier sum which makes the analytic method intractable. If a system is

actually made up of an infinite number of modes then we are stuck with the infinite

Fourier series. However for a large class of non–equilibrium systems this is not the

case as they tend to contain a low number of modes which interact in a nonlinear

way generating complicated dynamics. It is clear from these types of systems that

the number of modes has very little to do with the complexity of the dynamics. It

is therefore necessary to give up the old philosophy that understanding individual

trajectories leads to an understanding of the system, and correlating complexity with

number of independent modes, to the newer philosophy which is more statistical in

nature, where the global dynamics is more important than individual trajectories.

This leads to new concepts such as the dimension of a system, or the number of

non–negative eigenvalues contained in a system, as will be discussed in detail.



2.2 Characterisation of chaos 17

2.2 Characterisation of chaos

As mentioned previously, an attractor is the subspace which all trajectories follow af-

ter some initial transients (which are just the paths traced out in phase space during

time evolution each with a different initial condition). The attractor is invariant un-

der the flow F (x) given ẋ = F (x), which means the attractor doesn’t change if time

evolves forwards or backwards, for almost every initial condition on the attractor.

That is, the remaining points can be covered by cubes of arbitrarily small volume

thus have zero measure. The easiest way to distinguish between periodic and non–

periodic behaviour is by applying the Fourier transform to one of the variables of

the system. The spectrum of a periodic signal is a sequence of δ functions, the first

being the fundamental frequency, and the remainder are the integer multiples. A

quasi–periodic signal would possess the same spectrum as above with an additional

set of δ functions that are linear combinations of the original frequencies. It is more

difficult to distinguish between quasi–periodic with a large number of modes and a

chaotic signal. Quasiperiodic systems with a large number of modes are less common

as the modes would have to be very weakly coupled. If the coupling is too strong

then chaotic dynamics evolves rather than quasi–periodic [50]. The chaos spectrum

appears as broadened peaks with a broad background. This would appear to have an

infinite number of modes and therefore an infinite dimension. Although the Fourier

transform cannot distinguish between infinite dimensional and chaotic dynamics of

finite dimension, it is a useful guide to the nature of the dynamics of a system. Since

a chaotic system is aperiodic, the chaotic attractor cannot have any two trajectories

intersecting. This is the reason why a system must have a least three degrees of

freedom to allow chaos to emerge. A two dimensional system can be made chaotic

if one parameter is made time dependent, where time itself effectively becomes the
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third degree of freedom. This is known as non–autonomous chaos. If no modula-

tion is required to generate chaos, then that system possesses at least three degrees

of freedom and produces autonomous chaos. Both types of chaos will have chaotic

attractors with the property that there are an infinite number of unstable periodic

orbits contained in the attractor [51]. This leads to stretching and folding of trajecto-

ries in phase space depending on whether a trajectory is near an unstable point, and

a stable point respectively. Although there are unstable points, there must be enough

stable points so that the chaotic attractor is attracting, otherwise trajectories would

just eventually escape to some other subspace. The combination of the boundedness

of the attractor, and the fact that no two trajectories can intersect results in the

attractor possessing infinitely fine fractal structure.

2.2.1 Statistical analysis–Ergodic theory

To investigate the effects of different perturbations applied to a chaotic system some

measures are required which can quantify the perturbed system. One way to analyse

the dynamics is to examine individual trajectories. This can be very difficult to do

in a chaotic system since they may not initially begin on the chaotic attractor, and

hence will correspond to transient dynamics. Once the trajectories have evolved onto

the attractor then there still remains the problem that a particular initial condition

may evolve and be restricted to a subspace of the chaotic attractor for a long time

before the remaining attractor is visited. This will lead to misleading conclusions

about the nature of the dynamics. This can be minimised if “typical” conditions are

chosen, but these are often not known a priori.

To simplify the analysis of dynamics and minimise the above problems, it is better

to shift the emphasis to invariant measures which only consider long term dynamics.

A given probability measure ρ is invariant under the map xt = f t(x) if it is time
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independent

ρ[f t(E)] = ρ(E) (2.2)

where E is a subspace that contains x. ρ is ergodic if for every continuous function φ

the time average is equal to the space average

lim
T→∞

1

T

∫ T

0

φ[f tx(0)]dt =

∫

ρdxφ(x) (2.3)

for almost all initial conditions x(0) on the attractor. If ρ cannot be decomposed into

two smaller measures ρ 6= ρ1 + ρ2, then again it is ergodic. An attractor contains

an uncountable number of distinct ergodic measures. Not all these measures are

physical such as an unstable fixed point. (This is all summarised in Eckmann [51]).

This cannot be measured in the presence of unavoidable noise which occurs in physical

systems. Mathematically, a measure is physical if a system ẋ = F (x) has the same

measure as ẋ = F (x) + ε as ε → 0, and the natural measure, defined in the next

section, is an example of a physical measure.

2.2.2 Natural measure

An attractor has many unstable periodic orbits which fill certain regions of phase

space. The density distribution of these orbits is invariant as t →∞. but is generally

far from uniform in space. To calculate this measure the attractor must be covered

with a grid of cubes of length εi. A random initial condition x0 evolving for a time

T will spend a fraction of this time ti inside the ith cube which can be written as

ti = f(x0, T, εi). As T increases the fraction of time a trajectory spends in the ith

cube approaches a constant and is equal to the natural measure which is given by

µi = lim
T→∞

f(x0, T, εi)

T
(2.4)

Two intuitive examples of the natural measure for a system containing a stable fixed

point, and a system containing a periodic orbit will make this clear. A system with a
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fixed point p has a simple ergodic probability measure ρ = δp since all points end up

at the fixed point as t →∞. For a periodic state the periodic orbit can be considered

as an extension of the fixed point, and hence defined as a continuous set of delta

functions Γ = {δfta : 0 ≤ t < T}. The ergodic measure is

ρ = δΓ =
1

T

∫ T

0

dtδfta (2.5)

For each bifurcation parameter µ in equation 2.1 there may be α attractors Aµ
α,

each one having at least one physical measure ρµ
α. The presence of bifurcations has

broken the continuity of relationships between µ, ρµ
α and the stability properties

(eigenvalues λi). However there may be continuous relations between the bifurcation

parameter µ, and the associated physical measures ρµ
α when the parameter µ is re-

stricted to lying only in between two bifurcation points. For example, in Chapter 5

it is shown that the period 1 pulsation in the ammonia laser increases in amplitude

monotonically with pump power from the period 1 threshold to the chaos threshold.

Basic structural information about a particular chaotic attractor under investigation

is required, so that an estimate of an appropriate perturbation can be made. A similar

invariant to the natural measure is considered here, and is known as a recurrence plot

[52], which emphasises the unstable periodic orbits that exist in a chaotic attractor.

For example, the Euclidean distance is calculated between two points separated by

time τ in the five dimensional phase space for the complex Lorenz equations discussed

in detail in Chapter 3. If the distance is less than a tolerance chosen to be 0.2 then a

count is registered at the time separation bin τ . This condition is tested for each of

the 100 million points lying on the chaotic attractor of the complex Lorenz equations,

and the bin is incremented appropriately. The result is shown in figure 2.1 which

shows sharp peaks approximately at multiples of the fundamental pulsation period

which is calculated from the average pulsation period of the time trace to be 3.08

time units. The first peak in the histogram is at 2.666 time units which is consistent
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Figure 2.1: Frequency of occurrence for orbits of length τ where the end points of the
orbits in phase space are within a distance of 0.2 (Arb. units). The first peak is at time
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Figure 2.2: Distance of points separated by time τ averaged over the whole attractor.
The first minimum corresponds to τ = 3.0955.
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Figure 2.3: Distances are calculated for points separated by time τ for all points on the
chaotic attractor, and the minimum distance is calculated, and plotted as a function of τ

with the results in Chapters 5, and 6 where a modulation was applied to the chaotic

system at a higher frequency than the average pulsation frequency of the system. The

recurrence plot is a good indication of the periods of the unstable periodic orbits in

the chaotic system, and as will be seen is useful information to determine the mod-

ulation frequency required in a non-feedback control method, or the delay required

for a feedback control method. The general trend of the histogram did not depend

critically on the distance tolerance, although if the tolerance was set too low then a

number of the peaks would vanish, and if the tolerance was set too high then the sharp

peaks in figure 2.1 would be completely broadened. Two other methods of finding the

periods of the unstable orbits were used. The first involved calculating the distance

between two points separated by time τ , and averaged this over 100 million points of

the chaotic attractor. This is shown in figure 2.2. Since the distance is averaged over

the attractor the minima occur very close to multiples of the average pulsation period

(the value for the first minima in figure 2.2 is 3.0955). The second method involves

searching for orbits of period τ over the attractor as in the previous method except
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that only the minimum distance is recorded rather than the average for each time τ .

The result is shown in figure 2.3. An orbit which has the smallest distance after time

τ is likely to be an orbit which is almost closed suggesting that it is very close to the

corresponding unstable periodic orbit. The value of the first minimum is 2.588 time

units which is close to the histogram result. Hence both these numbers can be used

as a starting point for a particular control experiment. These two methods of finding

the periods of the unstable orbits do not rely on estimating an appropriate tolerance

as was required in figure 2.1 so are easier to calculate.
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2.2.3 Lyapunov exponents and dimension

Finding the invariant measures of a system is useful as it gives information about

the long term dynamics. But it does not give any indication about the magnitude

of stability of the long term dynamics. If searching for simple dynamics such as a

controlled state is desired, then a measure of stability is required to indicate the

existence of the simple dynamics, or a controlled state. A simple way to quantify

stability in a system is to calculate the stability of the fixed points which are invariant

measures. A point displaced by ε from a fixed point will be exponentially attracted or

repelled to the fixed point if ε is small enough so that equation 2.1 can be expanded

as a Taylor series where the terms higher than first order are insignificant. The

expansion or contraction rate is the Lyapunov exponent.

The first order approximation restricts the use of the Lyapunov exponents of fixed

points to be only an indication of how trajectories may appear in phase space. It is

more useful to have a rate of expansion and contraction which is averaged over the

whole attractor. This quantity is known as the global Lyapunov exponent, and there

is one representing the stability along each dimension of a system. They can be

calculated using the multiplicative ergodic theorem of Oseledec [53] In a dynamical

system of the form xt = f t(x) , ρ is a probability measure contained in a subspace

M and f = M → M preserves the measure. Then define the matrix of partial

derivatives, or Jacobian as

T t
x i,j =

∂f t
i

∂xj
(2.6)

If ρ is ergodic (and compact) then for almost all x with respect to the measure ρ

the limits exits

lim
t→∞

(T t∗
x i,jT

t
x i,j)

1

2t = Λx (2.7)

lim
t→∞

1

t
log ||T tu|| = λi (2.8)
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where λ(1) ≥ λ(2) ≥ . . . λ(n) are the eigenvalues of Λx and u is the associated eigen-

vector. This is generally calculated numerically, but rounding errors can grow signifi-

cantly if there are very small numbers present in the matrix Λx. Hence the Lyapunov

exponents are calculated here using the differential equations.

Calculation of Lyapunov exponents from differential equations

The simplest way to determine the average expansion and contraction rates is to have

a set of initial conditions which are infinitesimally close to each other and allow them

to evolve. The problem with this method is that these points must be relatively

close to each other after hundreds of orbits so that linear theory is still valid at these

distances. A computer with hundreds of bits precision is required for this procedure

and is currently not available. This problem can be avoided by using the phase space

plus tangent space technique developed by Bennetin et al. [54], and is the preferred

method used here. An initial condition x0 lying on the chaotic attractor is evolved

by the equations of motion creating a trajectory in phase space which is called the

fiducial trajectory.

An infinitesimal sphere is constructed so that x0 is at the center. Points which lie

on this sphere are evolved by the action of the linearised equations of motion, while x0

is evolved using the nonlinear equations of motion to give x. An orthonormal frame is

defined at x0 and is evolved by the linearised equations of motion. The principal axis

tends to diverge, and each vector tends to align to the direction of most rapid growth

so they will eventually become indistinguishable. These problems are avoided if a

repeated use of the Gram–Schmidt reorthonormalisation procedure is applied to the

basis vectors. Let the initial set of basis vectors be {e1, . . . , en} which is acted upon

by the linearised equations of motion to give {v1, . . . , vn}. Since each of these tries

to align itself along the λ1 direction, and the Gram–Schmidt procedure is orientation

preserving then the initial labeling of the vectors can be arbitrary. These vectors are
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Figure 2.4: Evolution of an infinitesimal sphere around x0 by the action of the linearised
equations of motion while x0 is evolved using the non linear equations of motion. The sphere
becomes distorted into an ellipse due to the non equal Lyapunov exponents along each axis.
v1 becomes renormalised to v′1. Only the component of v2 orthogonal to v′1 is taken and
renormalised to give v′2 using the Gram–Schmidt reorthonormalisation procedure.

renormalised to give {v′1, . . . , v′n}

v′1 =
v1

||v1||
,

v′2 =
v2 − 〈v2, v′1〉v′1
||v2 − 〈v2, v′1〉v′1||

,

. . .

v′n =
vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1
||vn − 〈vn, v′n−1〉v′n−1 − · · · − 〈vn, v′1〉v′1||

, (2.9)

where 〈 , 〉 is the inner product. The frequency of renormalisation is not critical as

long as the magnitude and direction of the vectors do not exceed computer limitations,

and typically is performed once per orbit of the dynamical system. The direction of

the first vector remains unchanged by the renormalisation procedure and is free to

align itself along the most rapidly growing direction as shown in figure 2.4. The

second vector v′2 is not free to seek the most rapidly or second most rapidly growing

direction. This is because v′2 is constructed by removing any v′1 component present
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so that it is orthogonal to it. This “rotation” is due to the action of the Gram–

Schmidt procedure rather than the action of the linearised equations of motion which

is graphically shown in figure 2.4. The two dimensional subspace spanned by the

original vectors v1 and v2 has its orientation preserved since the new vectors v′1 and

v′2 span this same space. It is the two dimensional subspace that is most rapidly

growing, and has area proportional to e(λ1+λ2)t. λ2 can be obtained from the mean

growth rate of the projection of v2 on v′2. Projection of the kth evolved vector to the

updated one produces a correct update of the mean growth rate for the kth largest

Lyapunov exponent. The ergodic properties of the attractor allow a large portion of

the attractor to be visited so that the Lyapunov exponents are a good representation

of the “average” rates of expansion and contraction. Since averages are taken over a

long time, the sensitivity of the Lyapunov exponents to initial conditions is diminished

and the exponents can be considered invariant and classed as a statistical quantity.

This is the procedure used to obtain Lyapunov exponents discussed in Chapter 6,

and 7.

2.2.4 Fractal dimension

Another measure which is useful in characterising control is the fractal dimension of

the attractor. Chaotic dynamics has a non integer dimension, and regular dynamics

has an integer dimension as will become apparent shortly.

The Lyapunov exponents can not only indicate the dimension of the system, but

can be used to calculate the fractal dimension of the system if the global Lyapunov ex-

ponents are used. This is known as the Kaplan-Yorke conjecture [55]. The Lyapunov

dimension is

DL = K +

∑K
a=1 λa

|λK+1|
(2.10)

where the eigenvalues are ordered from largest (positive) to smallest, and K is chosen
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such that
∑K

a=1 λa > 0, and
∑K+1

a=1 λa < 0. The eigenvalues here are the global Lya-

punov exponents of the system. If all the exponents are negative then the attractor is

zero dimensional. One would intuitively expect the dimension to increase as the num-

ber of positive eigenvalues increases as more phase space is allowed to be filled. More

specifically, for each additional positive Lyapunov exponent λa which is greater than

the magnitude of the smallest negative exponent, the Lyapunov dimension increases

by approximately one.

There are other ways to calculate the fractal dimension which involve the distri-

bution of “points” in phase space. The term “points” is used here since even if the

system is a flow i.e. a differential equation and therefore continuous, time must be

discretised in any numerical integration routine or experiment. Let the time series of

variable x be y(k) where k = 1 . . .N . Then we can take the natural measure ρ(x) to

be

ρ(x) =
1

N

N
∑

k=1

δd(x− y(k)) (2.11)

So that the fraction of points in <d within a volume V in phase space is

∫

V

ddxρ(x) (2.12)

This measure is robust to noise and thus qualifies as a physical measure as defined in

section 2.2.1, and will be used to calculate the dimension of a system.

One of the most physically intuitive ways to measure the dimension of a system

is to observe how the number of points in phase space lying within a radius scales

as the radius approaches zero, given that the volume of radius r in dimension d will

scale as rd. Hence at a particular location x with a small radius r, we expect the

number of points n(x, r) within this sphere to scale as

n(x, r) ≈ rd(x) (2.13)
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where d(x) is the dimension at x. If the attractor is bounded by Ra then r should

satisfy | r
Ra
| � 1. A regular object has an integer dimension which remains unchanged

at all positions in the object using equation 2.13, but this uniformity of dimension

within an object is not guaranteed for complex structures such as an attractor. In

the same way the Lyapunov exponents are averaged over the trajectories to create

invariant global exponents, a similar method is used to create an invariant dimension.

The number of points within radius r can be expressed as

n(x, r) =
1

N

N
∑

k=1

H(r − |y(k)− x|) (2.14)

where y = (x1, x2, . . . , xn) and x belongs to this set, and H is the Heavyside function

H(p) =







1 if p > 1

0 if p < 0







(2.15)

The density of points on the attractor ρ(x) will be non-uniform in general, so

more information about the system can be extracted by looking at the moments of

the function n(x, r).

We can generalise 2.14 so that different aspects of the distribution can be obtained,

and define the correlation function [56, 57] to be

C(q, r) =

∫

ddρ(x)n(x, r)(q−1) (2.16)

=
1

M

M
∑

k=1

[

1

K

K
∑

n=1

H(r − |y(n)− y(k)|)
](q−1)

(2.17)

in the limit of small r (but not taking it completely to zero otherwise there would

be no points inside this volume at every location due to discrete data). The fractal

dimension Dq is defined in the limit that r is small to be

C(q, r) ≈ r(q−1)Dq (2.18)
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If this limit exists it is conveniently expressed as

Dq = lim
r→small

log[C(q, r)]

(q − 1) log[r]
(2.19)

This should be computed for a range of r so that a good estimate of the log–log slope

can be made.

The simplest dimension to calculate is the box counting dimension where q = 0.

D0 = lim
r→small

log N(r)

log 1
r

(2.20)

N is the number of spheres (“boxes”) of radius r required to cover the data set so

that

N(r) ≈ r−D0 (2.21)

As was mentioned earlier, the dimension can be calculated by observing how the

number of points within a radius r scales with r using equation 2.13. This is the

q = 2 case in the correlation equation 2.16 and is the most widely used method

for calculating the fractal dimension. The q = 1 case is known as the information

dimension D1 and has been associated with the Lyapunov dimension DL [55].

The correlation equation 2.16 for C(q, r) was constructed so that various moments

of the distribution could be considered. The attractor has a non–uniform density in

general, and it can have “hot spots” and “cold spots” where the trajectories in phase

space visit much more regularly than normal, and visit rarely, respectively. These

regions can be interwoven in a complex way, so that the attractor could be said

to be multifractal. The correlation function can bring out these features depending

on the value of q used. For q > 1 the contribution of the higher probabilities in

the sum become more important even though there may be fewer boxes of these

probabilities than normal. This therefore gives information about the existence of

“hot spots”. Similarly for q < 1 the contribution is skewed in favour of the boxes
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with low probability indicating the presence of “cold spots”. The dimension of a

system very close to or at the unstable fixed point can have a significantly different

value to the average dimension calculated for a range of typical values. This was

shown to occur in the Henon map where the dimension was calculated using the

information dimension (q = 2) at the saddle point and at a very small distance from

the saddle point. The dimensions calculated were 1.36 and 1.21 [58]. An expression

was found by these authors for the dimension at a saddle point. This was constructed

for a map xn+1 = F (xn) which has a saddle point at p having a unstable and stable

eigenvalues λ1j > 1, and λ2j > 1 respectively. The dimension is

Dp(x) = 1− log λ1j

log λ2j

(2.22)

The value for the dimension averaged over 20 random initial conditions was 1.27 ±
0.01 which actually agreed well with the dimension calculated from the Lyapunov

exponents DL = 1.26. These results show that one should know roughly where the

fixed points are in phase space if a good estimate of ρ is to be made. Since an infinite

time series is not attainable, we want to make sure for a given finite time series that

the system is not spending too much time in the extremities, which would be the hot

and cold spots, and the fixed points. We should at least be aware that the system

could happen to be in these regions for a significant fraction of the finite sampled

time, so a skewed probability distribution will be measured altering the true value for

the dimension and other invariant quantities. If the initial conditions can be accessed,

then it is desirable to choose them far from the fixed points, and not near the hot

and cold spots. Locating the fixed points is relatively easy, however the hot and cold

spots are more difficult to locate since they can be interwoven in a fractal way.



32 Invariant properties of chaos

Using chaos to generate new initial conditions in the ammonia laser

In the experiments described in this thesis the chaotic system used was an autonomous

ring laser. The initial conditions here could not be controlled so I had to rely on

the random fluctuations of the system to produce a random initial condition. The

fact that these initial conditions were random meant that there was no particular

preference given to hot and cold spots or the fixed points. In fact it is almost certain

that the initial conditions produced did not lie on the chaotic attractor, since there

was always transient dynamics before it was replaced by chaos. It is possible in

principle to control the initial conditions of the laser by injecting a second field of

known amplitude into the laser. The problem is that there are quantum and thermal

fluctuations associated with both the ring laser and the external laser giving rise

to an uncertainty in the initial conditions for the electric field. The difficulty in

measuring the polarisation of the gain material and the inversion meant that I did

not attempt to control the initial conditions other than allowing the laser to evolve

for a period of time T0 before performing an experiment. The initial conditions at T0

are almost certainly on the chaotic attractor (due to the extremely high dissipation

in the Lorenz–like system discussed in chapter 3), and can be made to be far from

the fixed points for a suitable choice of T0.

2.2.5 Entropy

A chaotic system has sensitive dependence to initial conditions. Two nearby points

in phase space which are initially unresolvable and are assumed to be the same point,

will separate after some time to become distinguishable. By learning about the tra-

jectory we can in principle obtain more information about the initial conditions even

if with limited precision. The sensitive dependence of initial conditions has created

information. Let W be a bounded region invariant under a map M containing the
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probability measure ρ, and let W be partitioned into r segments W1, W2, . . .Wr. For

the partition {Wi} the entropy is

H{Wi} =

r
∑

i=1

ρ(Wi) ln[Wi]
−1 (2.23)

Each of these partitions is divided into successively smaller ones by the inverse map.

The first step is

Wj ∪M−1(Wk) (2.24)

to give {W (1)
i } where j and k are taken from 1, . . . , r and only the non–zero inter-

sections will be used as partitions. These new partitions are subdivided further by

operating the map M−2 on each of these to give

Wj ∪M−1(Wk) ∪M−2(Wl) (2.25)

giving {W (2)
i } So {W (n)

i } is

Wi1 ∪M−1(WI2) ∪M−2(Wl) · · · ∪M−n+1(Win) (2.26)

Then

h(ρ, {Wi}) = limn→∞
1

n
H({W (n)

i }) (2.27)

which still depends on the initial partition so this is maximised to give the metric

entropy or the Kolmogorov and Sinai entropy which is commonly known as entropy

[51]

h(ρ) = sup
Wi

h(ρ, {Wi}) (2.28)

Consider the baker’s map as an example where precision is limited to a two–state

measurement “top” or “bottom”. If a measurement is made at the start, and the first

iterate then this determines which of the four segments the initial condition begun.



34 Invariant properties of chaos

By taking two measurements each of resolution 1
2
, information about the position of

the initial condition to a resolution of 1
4

has been achieved. Therefore as the map

evolves further, and measurements are taken at each stage, the precision of the initial

condition is known to a greater precision hence information is gained as the map

(“time”) evolves.

The amount of information gained depends on how sensitive the system is to initial

conditions and intuitively one would expect the entropy to be related to the positive

eigenvalues. This was found to be the case [59]. In fact there is an elegant relation

between entropy and the positive eigenvalues:

h(ρ) ≤
∑

λi>0

λi (2.29)

The equality holds for Hamiltonian systems [60] but also for axiom A attractors of

dissipative systems [59]. Axiom A attractors are hyperbolic and the periodic orbits

are dense.

The eigenvalues calculated from the global Lyapunov exponents can be used as an

estimate for entropy using equation 2.29. During a controlled state there is no new

information created as time evolves so that the entropy is zero, and non zero for non

periodic states. This makes entropy a good measure for control.

2.3 Conclusion

The techniques developed using statistical analysis can be used to describe a chaotic

system in terms of recurrence plots, Lyapunov exponents, dimension, and entropy.

These quantities have the desirable property that there is no explicit time dependence

since a time average of some form has been used. This is desirable because transient

dynamical behaviour can be ignored as only the long term dynamics is important in

terms of controlling a chaotic system. In an experiment there is often not enough data
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to produce invariant measures so one must reduce themselves to analyse trajectories

in phase space. Lacking the luxury of infinite time so only a portion of the attractor

can be visited. This limitation can be minimised by using an experimental system

with reasonably fast dynamics, and by avoiding regions of phase space which are

either “hot spots”, “cold spots”, or the fixed points of the system. These measures

can also be applied to dynamics in the non chaotic regime. In particular, when the

aim is to find controlled states, the variations of these measures can point to their

location.
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3
The Lorenz equations

In 1963 Edward Lorenz set out to provide a simple model to describe the different

types of dynamics occurring in Rayleigh-Bernard convection of a fluid [61]. This

system consists of a fluid in a container which has heat applied from below. If the

temperature gradient is constant maintaining a constant temperature difference, then

there is no motion. If this steady state becomes unstable then there is convection of

the fluid. A set of partial differential equations was derived which included informa-

tion about the acceleration of gravity, coefficient of thermal expansion, viscosity, and

the thermal conductivity. Lorenz expanded the velocity and temperature variables

into spatial Fourier series and truncated the series to reduce the infinite dimension to

37
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a finite one. The result is a set of ordinary non-linear differential equations

Ẋ = −σX + σY (3.1)

Ẏ = −XZ + rX − Y

Ż = XY − bZ

Where X is proportional to the intensity of the convective motion, Y is proportional

to the temperature difference between the ascending and descending currents, and Z

is proportional to the distortion of the vertical temperature profile from linearity. The

parameter σ is the Prandtl number, r is the ratio of the Rayleigh number Ra to the

critical Rayleigh number Rc where convection occurs. The equations are symmetric

in X and Y so are unchanged under the transformation (X, Y, Z) → (−X, ,−Y, Z).

An analytic solution of this set of differential equations will not exist in general, so it is

useful to investigate the behaviour of the solutions near the fixed points of the system.

This can be easily performed by perturbation theory. Given a system ẋ = F (x) with

a fixed point x0, the steady state solution infinitessimally close to x0 is x(t) = x0e
λt

where λ is the associated eigenvalue to the determinant equation

|J(F (x))− λ| = 0, (3.2)

and J is the Jacobian operator J i
,jF = ∂F i

∂xj
i.e. the matrix of partial derivative

operators. For the Lorenz system, setting the linearised solutions to be x0,y0, and z0

for variables X, Y , and Z respectively, the linearised equations are










ẋ0

ẏ0

ż0











=











−σ σ 0

(r − Z) −1 −X

Y X −b





















x0

y0

z0











(3.3)

The values (X, Y, Z) are chosen to be steady state. From this it is easy to calculate

the divergence

∂Ẋ

∂X
+

∂Ẏ

∂Y
+

∂Ż

∂Z
= −(σ + b + 1) (3.4)
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Thus the variation of a volume element V0 in phase space is V̇0 = −(σ + b + 1)V0,

and it shrinks to zero as t →∞. Systems with this property are dissipative. This just

means that the volume of phase space tends to zero so that the attractor is flattened

and approaches a two dimensional surface. An attractor is a bounded subspace where

all initial conditions eventually end up as t →∞. Identifying attracting sets can give

us a clear picture of how trajectories evolve in phase space.

The trivial solution (X, Y, Z) = (0, 0, 0) has a characteristic equation of the matrix

3.2

[λ + b][λ2 + (σ + 1)λ + σ(1− r)] = 0 (3.5)

For 0 < r < 1 there are three negative real roots. One is positive when r > 1 so that

r = 1 defines the onset of convection. For r > 1 two more fixed points appear at

X = Y = ±
√

b(r − 1), Z = r − 1 (3.6)

The characteristic equation is a cubic

λ3 + (σ + b + 1)λ2 + (r + σ)bλ + 2σb(r − 1) = 0 (3.7)

This has one real negative root and two complex conjugate roots for r > 1. The

complex roots are imaginary if

r =
σ(σ + b + 3)

(σ − b− 1)
(3.8)

and beyond this the real part becomes positive. If σ < b + 1 there is no positive

value for r so the steady state is stable. If σ > b + 1 then the steady state becomes

unstable for a sufficiently large Rayleigh number. The complex roots indicate the

oscillatory nature of the solution, so that a perturbation from the fixed point will

lead to oscillations in intensity. The fixed points C1 and C2 exist for r ≥ 1 and are

C1 = (
√

b(r − 1),
√

b(r − 1), r − 1) (3.9)

C2 = (−
√

b(r − 1),−
√

b(r − 1), r − 1) (3.10)
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r

Origin

C1, C2

Fixed points:

Steady
solution
(i.e. zero)

Decaying
oscillation
to steady 
non zero

Transient
chaos

Chaos
0 1 r r r0 1 ch

Stable sink saddle point

Stable spiral Unstable spiral

:Dynamics

Figure 3.1: For the Lorenz system the type of dynamics and the stability of fixed points
is shown as a function of r.

A brief summary of the dynamics and the stability of the fixed points which shows

the different type of dynamics and the associated stability of the origin, C1, and C2

in between the bifurcation points is given in figure 3.1. To obtain a more intuitive

picture of the dynamics that can occur for different values of r, seven schematic

plots representing the phase space of the Lorenz system for various values of r are

shown in figure 3.2. This now includes information about the stability along the

three eigenvectors associated with each fixed point. This helps give a picture of the

shape of the attractor traced out by a trajectory in phase space. At |r| < 1 there

is only one fixed point which is a stable sink shown in figure 3.2a. The symmetry

is broken for 1 < r < r0 since now there is a creation of two more fixed points,

and the origin loses its stability along one of the three orthogonal axes associated

with the three eigenvalues. The two remaining stable directions form a stable two

dimensional manifold. The newly created fixed points C1 and C2 are stable as shown

in 3.2b. Increasing r (3.2c) causes these two fixed points to possess a two dimensional
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manifold where trajectories spiral in along that plane. These oscillations grow in

figure 3.2d until they meet the unstable manifold of the origin and form a closed

orbit which includes the origin and encloses the fixed point C1. This is known as

a homoclinic orbit and has an infinite period. By symmetry there will be another

homoclinic orbit enclosing C2 as shown in figure 3.2e. Increasing r further breaks

the homoclinic orbit but now allows the trajectories to cross the two dimensional

stable manifold of the origin as shown in figure 3.2f. Points in phase space moving

towards the origin which are within a very small distance ε can be expelled either in

one direction or the opposite depending if the point is within +ε or −ε of the origin,

hence the outcome of a trajectory depends sensitively on the previous position of the

trajectory relative to the origin. This apparent chaotic behaviour cannot last since

the fixed points C1 and C2 are not unstable, so the trajectory will eventually end up

on C1 or C2 which are the attractors. There is a narrow region between r1 and rch

where a chaotic attractor exists, although the other two stable attractors at C1 and

C2 coexist. The system becomes fully chaotic when the fixed points C1 and C2 are

unstable as shown in figure 3.2g. The only attractor here is the chaotic attractor.

It is clear that the shape of any of the attractors is going to be relatively thin

since there is always a stable manifold at C1 and C2 which has the effect of squashing

the trajectories in phase space to a plane - hence the negative divergence calculated

previously in equation 3.4. This would indicate that the dimension of the attractor

would lie somewhere in between 2 and 3. The exact value depends on the system

parameters. One would expect that if the stable manifolds of C1 and C2 are highly

attracting then the trajectories in phase space would be rapidly contracted onto a

surface thus reducing the dimension of the attractor to be much closer to a dimension

of 2 rather than 3. The actual trajectories can be calculated numerically by integrat-

ing equation 3.1 for some initial conditions and the solution X(t) is shown in figure
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r
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r
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(f) Transient chaos                                           (g) Fully chaotic

X

Y
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Figure 3.2: This shows the stability of the fixed points and an estimate of the trajectories
in phase space as r is varied in the Lorenz equations.
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3.4c which shows sequences of growing pulsations in the positive and negative direc-

tion. The number of pulsations before there is a change in sign of the field appears

random. The phase space portrait for the system shows that a growing sequence of

pulses corresponds to an outward spiral on one of the leaves in phase space.
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3.1 The Lorenz–Haken Laser equations

Instabilities in laser systems have been observed at least since 1964 [62] but their

origins were often obscure. Investigating laser instabilities in 1975 led Haken to find

an isomorphism between the Maxwell–Bloch laser equations, and the Lorenz equations

raising the possibility of explaining at least some laser instabilities in terms of chaotic

dynamics. The Maxwell–Bloch laser equations representing the dynamics of a single

mode homogeneously broadened two level laser in a ring cavity can be written in the

slowly varying envelope approximation as:

Ė = κ(P − E)− c
∂E

∂x
(3.11)

Ṗ = γ⊥(ED − P ) (3.12)

Ḋ = γ‖(λ + 1−D − λEP ) (3.13)

where E is the electric field, P is the polarisation of the gain material, and D is the

population inversion of the two level atoms. These parameters have associated decay

rates κ, γ⊥, and γ‖ respectively. The pump λ = (D0−Dc)/Dc where the unsaturated

population inversion is D0 and the critical inversion is Dc which is the value of the

population inversion at the lasing threshold . For isomorphism between these laser

equations and the Lorenz equations, there must be zero divergence of the electric field

which appears in equation 3.11. This is easily satisfied by a slowly varying travelling

plane wave electric field. The equations 3.11–3.13 will become the Lorenz equations

3.1 if the following parameters are transformed

t → τσ

κ
, (3.14)

E →
√

β(r − 1)X, P →
√

β(r − 1)Y, D →
√

β(r − 1)Z,

γ⊥ →
κ

σ
, γ‖ =

κβ

σ
, λ → (r − 1).

The laser equations 3.11–3.13 assume that the laser oscillation frequency, the

atomic resonance, and the empty cavity resonance all have the same frequency. This
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is a condition which is not always easily met experimentally. The restriction can be

removed by re-deriving the laser equations in a more general way so that the effect

of detuning the cavity from the atomic resonance can be included, as is shown in

Appendix B.

Ė = −κ((1 + iδ)E − λP ) (3.15)

Ṗ = −κ/σ((1− iδ)P − ED) (3.16)

Ḋ = κβ/σ(1−D − 1/2(E?P + P ?E)), (3.17)

σ = κ/γ⊥ β = γ‖/γ⊥

where E, P are now complex fields, and D is a scalar, δ is the detuning of the cavity

resonance relative to the atomic line center. In steady state

δ = ωc − ωa (3.18)

where the empty cavity frequency is ωc. The transition frequency of the lasing

atoms is ωa and has an associated line width ∆ωa, which is inversely proportional to

γ⊥. The laser frequency is pulled between the empty cavity and the atomic transition

frequency, so that

ωl =
ωc

κ
+ ωa

∆ωa

∆ωa+κ
κ∆ωa

, or (3.19)

ωl = ωc + κδ, or (3.20)

ωl = ωa −∆ωaδ. (3.21)

3.1.1 Dynamics of the complex laser equations

The dynamics of the Lorenz equations were analysed at the start of this chapter

to show the bifurcation sequence and the phase portraits for different values of r.
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This can be repeated for the laser equations by inverting the transformation 3.14 and

setting the detuning δ to zero. The previous graphs 3.1 and 3.2 will now have the

pump axis r replaced by λ, and the bifurcation points will be scaled according to the

inverse transformation applied to the Lorenz equations so that the subcritical Hopf

bifurcation occurs (r = rch) at

λHopf =
κ(κ + γ‖ + 3γ⊥)

γ⊥(κ− γ‖ − γ⊥)
(3.22)

Hence the necessary condition for chaos is that κ > γ‖ + γ⊥ which corresponds to

a laser with a relatively lossy cavity. This relation is therefore known as the bad

cavity condition. Many lasers require a low cavity decay rate in order that lasing

can occur which makes satisfying the bad cavity condition extremely difficult. This

is the reason why chaos was not unambiguously observed in a laser until 1984 [63]

where Weiss, and Klische showed that the gain in the far infrared ammonia laser is

so high that the bad cavity condition could easily be satisfied. This particular laser

has a high gain allowing a lower cavity decay rate, and chaos could be created with

a sufficiently large pumping.

Although the bad cavity condition still holds, the situation is now different when

δ 6= 0 as the equations become complex . The electric field and polarisation can be

written as a sum of real and imaginary components.

E = X1 + iX2, P = Y1 + iY2, D = Z (3.23)

Substituting this into the complex laser equations 3.15-3.17 results in a five dimen-

sional system. This means there is a bifurcation at δ = 0 since there is a creation of
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two new fixed points.

Ẋ1 = −(X1 − δX2 − λY1 (3.24)

Ẋ2 = −(X2 + δX1 − λY2) (3.25)

Ẏ1 = −(1/σ)(Y1 + δY2 −X1Z) (3.26)

Ẏ2 = −(1/σ)(Y2 − δY1 −X2Z) (3.27)

Ż = (β/σ)(1− Z − (X1Y1 + X2Y2)) (3.28)

The dynamics is now more complex since the embedding dimension of the attractor

has changed from three (in the non detuned case) to five. In the limit as the detun-

ing tends to zero, the dynamics of the system asymptotes to Lorenz chaos, and as

the detuning is increased the route to chaos changes to period doubling [64]. The

bifurcation diagram in the parameter regime used in this thesis is shown in figure

3.3. This was calculated by integrating the equations 3.11–3.13 and calculating the

periodicity of the intensity time trace. A pattern of pulsations repeating after n cycles

is called period n, and is graphically represented as n vertical parallel lines, period

zero is a light grey line, and chaos as a wide dark grey line. The range of dynamics

shown here is similar to the results of Zeghlache and Mandel [65] even though they

used different decay rates. In both cases the period doubling route to chaos doesn’t

occur until the detuning δ is at least 0.2. As the detuning is increased further the

threshold for period 1 at the start of the period doubling sequence also increases.

Eventually there will be no chaos for large enough δ. To simplify the graphics, the

phase space studied can be reduced to two variables X1 and X2 which is enough to

gain significant information about the system [66]. Abraham et al. [66] showed that

the intensity return map which is a plot of I(n+1) against I(n) where I(n) is the nth

intensity peak corresponding to the nth intensity pulsation, still retains a cusp like

feature in the detuned case, except that the peak cusp is rounded rather than sharp

due to phase modulation. This slightly modified cusp shape changes insignificantly
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as the detuning is increased. The topology of the detuned system compared to the

non detuned one was found to be similar even though the detuned system has the

additional feature of alternative routes to chaos. The Lyapunov dimension of the

chaotic attractor DL was found to be 3.05 for the system parameters in figure 3.3

with δ = 0.2 and λ = 46. This is almost one dimension higher than the non detuned

counterpart with DL = 2.06. These parameters are used in all numerical simulations

presented in this thesis since they correspond to similar behaviour observed in the

laser, and are not varied unless otherwise specified.

3.2 Comparing the Lorenz–Haken model with the

ammonia laser

In this thesis the chaotic dynamics in the ammonia laser is explored in terms of

examining its behaviour under various external perturbations, and exploring ways

to simplify the dynamics. The dynamics is modified by perturbing the structure of

phase space, but it is not desired to apply a very large perturbation as this is likely to

create a drastically different system which may bear little resemblance to the original

system. The properties of this new system may not be described using standard

chaos theory such as the structure of a chaotic attractor discussed in the previous

chapter. The infinite number of unstable periodic orbits may become finite, severely

truncated, or have very complicated stability behaviour within each orbit cycle of

the associated unstable periodic orbits as can happen with sinusoidal perturbations

[67]. The experimental system can never be equated exactly with the model as there

are many assumptions required to make the laser equations isomorphic to the Lorenz

equations. The aim is not to make direct comparisons of the experiment with the

model, but to compare general properties such as the occurrence of control, and
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generalised synchronisation which rely on global principles such as the structure of

the attractor, and ergodic properties of chaos (see previous chapter for details). If a

result in the experimental system is not observed in the Lorenz–Haken model, then it

is not obvious how that particular phenomenon could be reproduced in another chaotic

system of similar global properties. Why then choose the Lorenz–Haken equations?

These equations have been extensively studied [68], and has been applied to fluid

dynamics [61]. There has been many detailed comparisons made between the Lorenz

equations, and the single mode autonomous ammonia laser [49, 69, 70]. Comparisons

were also made between the ammonia laser, the Lorenz equation and more complex

models describing the effects of optical pumping on the three level system by Weiss et

al. [71]. Many qualitative comparisons agree with the general routes of bifurcations

to chaos [72], statistical dynamics in the chaotic, and the metastable regime [73],

and invariant constants such as the fractal dimension [74]. The parameters used in

the model such as the decay rates, are not chosen to correspond exactly with the

experiment, but rather an “effective parameter” is chosen such that the dynamics of

the model correspond well to the experimental observations.

There are some issues which are not explained by the Lorenz model or more com-

plex models, such as the existence of periodic oscillations observed experimentally

before the chaos threshold, and the relative position of the first threshold (lasing

threshold), and second threshold (chaos) do not quite agree (see Chapter 4). On

the whole the relatively large amount of agreement between various statistical quan-

tities, and the laser makes the complex Lorenz–Haken model an obvious choice to

make qualitative comparisons between the experimental system, and the numerical

simulations, and to access parameters, and variables not experimentally conveniently

measurable.
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Typical Intensity (E∗ ·E) time traces in the chaotic regime are shown for the case

δ = 0 and δ = 0.2 in figure 3.4a and 3.4b. The corresponding fields X(t) and the real

component of X(t) are shown in figure 3.4c and 3.4d respectively.

The largest differences between the two systems become apparent when the vari-

able X(t) for the resonant case, and the real component of X(t) for the detuned case

is compared. The peaks of X(t) in figure 3.4c are more evenly distributed around

the values ±10 than 3.4d which corresponds to X1(t) in the five dimensional system.

This shows there is a modulation with a period of the order of tens of the average

pulsation period of the time trace, which does not appear in the intensity time trace

3.4b. This is because the intensity is a combination of the real and imaginary com-

ponents of X(t) and is expressed as I(t) = X2
1 (t) + X2

2 (t), and X2(t) has a similar

slow modulation as X1(t) (not shown) such that the resultant intensity is free from

the slow modulation.

The attractor for the Lorenz equations with δ = 0 is shown in figure 3.5. It is

similar to the sketches based on linear stability analysis in figure 3.2 indicating this

analysis gives a reasonable estimate to the topology of phase space. The attractor

for the complex Lorenz equations in figure 3.6 looks similar to the Lorenz attractor

except for the presence of slow modulation which shows up as trajectories following a

deformed torus in additions to the two spiral structures which look very similar to the

non–detuned attractor.. This is also seen in figure 3.7 which shows two projections

of the five dimensional system to the real field X(t), imaginary X(t) and Z(t) (left

figure), and the real Y (t), imaginary Y (t) and Z(t) respectively (right figure).

3.3 Phase of a chaotic signal

In any control experiment the concept of the phase of a particular variable of a chaotic

system needs to be developed, since this instantaneous phase will be compared to the
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instantaneous phase of an external perturbation, so that existence of control can be

established.

The phase is closely related to the displacement dx(t) along the chaotic trajectory

[11] where there is a zero expansion rate between two infinitesimal adjacent trajec-

tories at dx(t) (corresponding to a zero Lyapunov exponent [11]). If a chaotic flow

has a proper rotation about a reference point then a shift along the trajectory dx(t)

can be uniquely mapped to a shift of phase dφ(t) of the oscillator. Three common

methods for calculating phase are firstly, the dynamics can be projected on an x–y

plane and the phase can be defined as the angle

φ(t) = arctan
y(t)

x(t)
. (3.29)

The second method consists of constructing a surface which is one dimension lower

than the number of variables of the chaotic system. This surface is known as a

Poincare section and is oriented in the variable space, known as phase space, such

that the chaotic trajectory crosses this surface once for each orbit. Each successive

crossing is associated with a phase increase of 2π, and the instantaneous phase can

be calculated by linear interpolation

φ(t) = 2πk + 2π
t− τk

τk+1 − τk
τk < t < τk+1 (3.30)

where the time of the kth crossing of the flow with the Poincare section is τk. There

may be many different possible orientations of a Poincare section which will all satisfy

the restriction of one crossing of a chaotic trajectory for each cycle. In particular there

is a Poincare section which corresponds to successive maxima or minima of a scalar

chaotic time series. This eliminates the need to reconstruct the dynamics in a higher

dimension then finding an appropriate Poincare section if one only has access to a

scalar variable, since the peaks of the series of pulsations (or troughs) from the scalar

variable is equivalent to an appropriate Poincare section [8]. The third method is the
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analytical approach introduced by Gabor [75]. The amplitude A(t), and phase φ(t)

of a chaotic signal can be decoupled so that the chaotic signal can be represented as

Φ(t) = s(t) + js̃(t) = A(t)ejφ(t), (3.31)

where s̃(t) is the Hilbert transform of the observed time series s(t)

s̃(t) =
1

π
P.V.

∫ ∞

−∞

s(τ)

t− τ
dτ, (3.32)

where P.V. represents the Cauchy principal value for the integral.

The three methods of calculating phase of a chaotic signal work equally well if a

chaotic flow rotates about a reference point. The phase may not be defined for chaotic

oscillators which are far from phase coherent. An example is the Rössler oscillator

at a=0.25 [8] where the chaotic trajectory does not cycle the unstable fixed point

in all rotations. Since the phase does not increase monotonically in time, no proper

Poincare section can be constructed.

In the experiments in this thesis the only accessible variable is the intensity, so

to minimise the errors in the Poincare section and phase, the second method of

calculating phase involving the peaks of successive intensity maxima is used.

3.4 Conclusion

The similarities between the complex Lorenz model, and the ammonia laser in terms

of statistical measures of chaos, and invariant measures like the dimension of the

attractors have previously been shown to compare quite well. Therefore this provides

enough motivation to use the complex Lorenz model to describe phenomena observed

in the ammonia laser. There are experimental difficulties in repeating experiments

precisely, and exploring the affects of small parameter changes is limited. This is

easy to do numerically, and can give information about appropriate parameter values
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to explore experimentally. Conversely, the features observed in the experiments can

be used to narrow the region of computation in the model, which is at least three

dimensions typically, thus reducing computation time by over an order of magnitude.
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Figure 3.3: The bifurcation diagram for the detuned laser equations (complex Lorenz)
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grey lines are chaotic behaviour. The parameters used are σ = 1.5, β = 0.25, and κ = 1.



3.4 Conclusion 55

0 100 200
0

100

200

300

In
te

ns
ity

(a)

0 100 200
-20

-10

0

10

20

Time

X
(t

)

(c)

0 100 200
0

50

100

150

200

In
te

ns
ity

(b)

0 100 200
-20

-10

0

10

20

R
e(

X
(t

))

Time

(d)

Figure 3.4: Two Intensity time traces (X∗(t) · X(t)) for the Complex Lorenz system
with δ = 0 at (a), and δ = 0.2 (b). The corresponding fields in both cases are shown at (c)
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4
Chaos in the ammonia laser

4.1 Introduction

To experimentally investigate the effects of modulating an autonomous nonlinear sys-

tem with a chaos threshold, a suitable system should be chosen so that measurements

of dynamical variables is possible with good accuracy. Ideally accessibility to all the

variables would be desirable but it is difficult to find a system which has all its vari-

ables accessible for measurement, so it is easier to find a physical system where only

a subset of its variables can be measured. This does not prevent calculations such as

the period of dynamics and invariant measures. These include the fractal dimension

59
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which can be derived using Takens’ theorem [76].

In 1984 Weiss and Klische [63] suggested that Lorenz–like chaos could be observed

in the far infrared laser as the requirement of the bad cavity condition could be

satisfied. In an optically pumped FIR laser the homogeneous linewidth is determined

by pressure broadening since only one velocity group of molecules is excited. Since

such optically pumped lasers operate at low pressures the homogeneous linewidth is

very narrow, allowing the bad cavity condition to be met for only moderate empty

cavity losses.

The molecules CH3OH and CH2F2 were reported to be the most efficient for a

FIR laser [77], until the 81.5 µm transition in the 14NH3 laser was discovered. This

has a gain of 1.5 m−1 [78] which still allows lasing threshold to be reached with a

relatively large empty cavity loss. There is an AC-Stark splitting in the gain line of

the forward but not the backward emission, although there is an AC-Stark broadening

present which can be larger than the homogeneous linewidth. This can be overcome

by increasing the gas pressure of the lasing material. Subsequently if was found that

the 153 µm transition of an 15NH3 laser has a higher gain than the 14NH3 transition.

This makes it a good chaotic system to study since the pump power threshold for

chaos is lower in the 15NH3 system.

Although the only conveniently measurable variable is the square of the electric

field, the intensity, it is rather easy to measure accurately. The pump power and

detuning are two accessible parameters which can be modified externally. Although

it is not easy to vary the detuning rapidly, the pump power can be modulated on a

sub-microsecond time scale using an acousto-optic modulator.
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4.2 Experimental apparatus

4.2.1 The ammonia ring laser

The ammonia laser used in this work has a ring cavity of perimeter length 2 m and

the optics consist of a curved gold mirror, a gold blazed grating and a copper wire

mesh (see figure 4.1). The concave mirror has a 2 m radius of curvature and reflects

both the pump radiation and the lasing radiation. The grating has a grid constant

of 12.4 µm which is much less than the lasing wavelength 153 µm so behaves as a

totally reflective mirror at that wavelength. This grating has a second purpose which

is to couple the pump radiation into the ring cavity. The pump enters the side of

the box through a ZnSe window and is reflected off a gold coated mirror onto the

diffraction grating. The angle of the beam to the grating is adjusted so that the first

Gr

M

W.M.

Ammonia    NH
15

3

C.M.

To diffusion
pump

Forward emission

Backward emission

M

M M

LensCO  Primary pump laser                90% mirror

Grating Piezo transducer

Vacuum gauge

ZnSe window

AOM

HgCdTe
detector

13

2

Schottky diode

Schottky diode

Figure 4.1: The experimental layout. Pump laser beam passes through mode matching
lenses, the AOM, and is directed into the ring cavity via mirrors M. It then diffracts off
the grating GR onto the curved mirror C.M. The pump radiation is totally absorbed before
reaching the wire mesh W.M. The FIR radiation is coupled out of the ring cavity to either
Schottky diode depending on the direction the radiation is travelling.
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order diffraction of the pump is coupled into the ring resonator. The copper wire

mesh has a grid constant of 50 µm which couples 16 % of the lasing radiation out

of the ring resonator. This radiation can exit in either direction so two polyethylene

lenses of focal length 5 cm are fixed to the walls of the stainless steel box allowing the

two beams to be coupled out of the box. The box is covered with a perspex plate and

can be evacuated with a rotary pump and diffusion pump and filled with 15NH3 gas.

To minimise expansion and contraction of the resonator length, a quartz rod is used

as a mount for the optical elements. The ring cavity must be pre aligned before the

box is sealed and evacuated. The gold concave mirror is mounted on a micrometer

controlled translation stage so that the cavity length can be changed with minimal

change in transverse alignment. The micrometer screw is coupled out of the box

so that cavity length adjustments can be made while the box is closed and under a

vacuum. The box contains a thermal conductivity vacuum gauge (Thermovac TM202)

to monitor the pressure inside. The rotary pump and diffusion pump combination

is used for pre-pumping to less than 1 µbar before filling the box with the isotopic

ammonia gain material. The 15NH3 gas comes in a 1 litre glass bottle filled at 1

atmosphere pressure (Aldridge 98 % purity 15NH3) and has two taps in series with

narrow separation which allows for a controlled fill of gas, and prevents contamination

of the ammonia reservoir.

4.2.2 Experimental setup

The ammonia laser is optically pumped by an isotopic carbon dioxide laser using

13CO2. The beam from the carbon dioxide laser passes through a telescope so that a

waist is formed inside the ring cavity, then it passes though an acousto optic modulator

(AOM) (Isomet 1207B-6) to allow dynamics to be imposed onto the pump power.

This is fed through the ZnSe window onto mirror M and gets coupled into the ring
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cavity via the diffraction grating. The laser action at wavelength 153 µm can be bi-

directional giving a forward emission and a backward emission, which pass through

the polyethylene lenses in the box which focusses the radiation onto two Schottky

diodes. All the measurements described in this thesis were made with unidirectional

operation in the backward direction. The second Schottky diode was used to check

that there was not forward emission.

The cavity length of both the pump laser and the ammonia laser can be adjusted

both manually through a micrometer, and electronically via a piezo electric trans-

ducer. The dynamics of the pump can be monitored by measuring the intensity

of the first diffraction order from the AOM onto a liquid nitrogen cooled HgCdTe

detector. Intensity data from the ring laser and the pump dynamics are simultane-

osly recorded and displayed using a digital storage oscilloscope (Tektronix TDS430A)

with a sampling rate of 25 MHz and a maximum record length of 120000 points per

channel, and a spectrum analyser (HP70000 series 100Hz-2GHz).

4.2.3 Optically pumped ammonia laser

The ammonia laser is pumped between the ground vibrational state sub-level a(5,4),

and the first excited ν2 vibrational state s(5,4). This corresponds to a wavelength

of 10.78 µm which coincides with the strong 10R(18) line in the 13CO2 laser [79].

It is therefore strongly absorbed and efficiently excites molecules to a level where a

very strong population inversion can be maintained. This in turn generates the very

high gain needed to exceed the lasing threshold in a laser cavity satisfying the bad

cavity condition. The far infrared transition occurs between two rotational states

s(5,4) and a(4,4) which are adjacent, and correspond to a wavelength of 152.9 µm

as shown in figure 4.2. The bad cavity condition which is discussed in chapter 2 is

easily fulfilled by lowering the gas pressure of the ring laser system. At low pressure

the far infrared transition is Doppler broadened, however only one velocity group of
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Figure 4.2: The energy level diagram showing the pump transition aQ(5,4) and the
FIR transition aR(4,4) of 15NH3.

lasing molecules can be selected with optical pumping. The laser therefore behaves

as a homogeneously broadened laser with travelling plane waves as required for the

Lorenz-Haken model. Optical pumping can also produce bi-directional radiation [80]

depending on which velocity group of ammonia molecules the pump radiation is

exciting, but such operation is avoided in the present work.

The first of two thresholds correspond to the onset of lasing which occurs between

40–100mW of CO2 pump power. The second threshold corresponds to the onset of

chaotic dynamics which occurs for pump powers greater than 3W depending on the

ammonia gas pressure. Hence it is very easy to achieve lasing, but more difficult to

reach the second threshold.

4.2.4 The 13CO2 laser

A wavelength of 10.78 µm is used as the optical pump because it coincides closely

with the aQ(5,4) vibrational transition in isotopic ammonia. The isotopic carbon

dioxide laser tube (Ultra Lasertech 9123 13C16O2 ) is sealed and contains 13C16O2

diluted with three parts nitrogen and seven parts helium to give a total pressure of
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20-22 Torr. It has an outer water jacket for cooling and zinc selenide (ZnSe) Brewster

windows at both ends. The length of the laser tube is 0.8 m and it is electrically

excited by a discharge current of 6 mA providing a maximum of 10 W at the 10R(18)

transition when the laser is new, degrading after about 1000 hours of use. The cavity

is a Fabry-Perot with a 2 m radius of curvature ZnSe plano-concave output coupler

with reflectivity of 90 % on the curved surface with the flat surface anti-reflection

coated. This mirror is mounted to a piezo ceramic transducer so that the cavity

length can be electrically varied, the expansion coefficient being approximately 4.9

nm/V. A change in cavity length by half a wavelength corresponds to a free spectral

range of 150 MHz giving a cavity tuning rate of 0.136 MHz/V, reduced somewhat by

frequency pulling [81]. The other reflector is a blazed diffraction grating which is used

to select the 10.78µm transition. A grating is required since the 10.78µm transition

does not have the highest gain in the carbon dioxide laser.

4.2.5 Detectors

The HgCdTe detector

The pump radiation is detected using a Societe Anonyme de Telecommunications

(SAT) HgTe-CdTe photoconductive detector sensitive between 8 µm and 12 µm with

a bandwidth of more than 50 MHz. To reduce thermal excitations of carriers the

detector is cooled to 77 K with liquid nitrogen. The HgCdTe diode is biased of the

order of half a volt, to increase the sensitivity and bandwidth, and a signal is easily

detected for laser power of the order of a milliwatt
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Schottky barrier diode detector

The Schottky barrier diode detector is used to measure the radiation of the ammonia

laser (1.96 THz). There is an array of photolithographically produced gallium ar-

senide (GaAs) diodes in small wells of size 2 µm (Farran Technology model SD020).

Radiation is coupled to one of the diodes via a tungsten antenna of length 5 mm and

diameter 30 µm where the tip has been sharpened to a size of about 2 µm, which

was performed by electrolytic etching in a sodium hydroxide solution. The antenna is

brought into contact with a particular diode by moving the array towards the antenna

using a translation stage, and is held in place by the tension created in the antenna

due to the final position of the translation stage. The resultant configuration is shown

in figure 4.3. To enhance the signal generated from the laser radiation, which is fo-

cussed to a beam around 1 mm in diameter, a highly polished corner cube reflector

is used to concentrate the radiation onto the antenna. The diode is forward biased

to increase the sensitivity. There is an XYZ translation stage to find the optimum

position of the corner cube with respect to the antenna.

Array of diodes
on a chip

   Polished
   surfaces of the
   corner reflector

Antenna
XY

Z
XYZ translation stage

Figure 4.3: The arrangement of the Schottky detector.
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The laser radiation is half wave rectified by the Schottky diode. The lasing fre-

quency (1.96 THz) is much higher than the bandwidth of the measuring equipment so

is filtered out leaving behind the slower laser intensity fluctuations (0-6 MHz) which

correspond to the chaotic dynamics.

4.3 The acousto optic modulator

The pump laser can be electronically attenuated and modulated by using an acousto

optic modulator. In the experiment a germanium crystal modulator (Isomet 1207B-6)

was used which has a spectal range 2–11 µm, with a maximum aperture of 6 mm.

Taking into account the velocity of sound in germanium such an aperture implies a

rise time of 700 ns. The crystal requires a 30–50 MHz signal with up to 35 W of

electrical power to get a diffraction efficiency of 75 % [82]. This was achieved using a

signal generator followed by a pre-amplifier, a filter, and a power amplifier as shown

in figure 4.4.

RF source

Rhode Schwartz
100KHz - 1GHz ~

Pre-Amplifier Filter

Weltz SWR
Power meter SP600

CCI AR313 wideband
RF power amplifier

AOM

     RF
modulator

Arbitrary function
generator

Figure 4.4: The schematic layout for operation of the AOM.

Varying the output power changes the diffraction efficiency of the AOM hence

varying the amount of effective attenuation of the laser beam as it passes through the
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crystal. The diffraction efficiency can be modulated if a time varying signal modulated

the carrier signal. Such variations must be slower than the rise time of the AOM so

that modulation can take full effect. The carrier signal is modulated by using a series

of mixers and power splitters as shown in figure 4.5.
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Mini circuits
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2    1
Mini circuits
ZSC-2-2
Power splitter

Figure 4.5: The schematic details for the modulator in figure 4.4.

4.4 Monitoring frequency drift of the pump laser

The 15NH3 pump transition is Doppler broadened allowing velocity selected optical

pumping using a 13CO2 laser. To select a specific velocity group of 15NH3 molecules

requires a shift in the pump laser frequency which can be achieved by changing its

cavity length. Changing the velocity of the pumped molecules translates into an

effective change in the “atomic” resonance frequency, and hence detuning δ, so a

controlled change in pump cavity length allows access to different types of dynamics

in the FIR laser such as period doubling and spiral chaos. Problems can occur if the

pump cavity length varies in an uncontrolled way through temperature drift which

causes the length of the invar rod in the cavity to drift. This has the effect of drifting

the detuning in the FIR laser and can change the dynamics to a different regime. The

experiments thus required the detuning of the FIR laser to be fixed during the course
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of a particular experiment. This is achieved by making the duration of an experiment

short with respect to the drift rate. After a particular run the results are digitally

recorded onto a floppy disk which takes orders of magnitude more time to perform

than the actual experiment, allowing the pump cavity to drift significantly from the

position during the last experimental run. This problem can be reduced if the drift

rate of the pump laser is known so that an appropriate voltage can be applied to the

piezo attached to the output coupler of the pump laser, allowing the cavity length of

the pump to be corrected. Ideally, one would like to continuously measure the value

of the pump frequency with respect to the peak absorption frequency as this would

allow the detuning δ to be estimated.

To estimate the frequency and drift of the pump laser with respect to the 15NH3

line center, the Lamb dip effect was used [83, 84]. The Lamb dip is seen by retro-

reflecting part of the pump laser beam through a cell filled with the 15NH3 gas at low

pressure and measuring the intensity after this double pass of the cell. This cell was

used to lock the frequency of a second 13CO2 laser using a lock-in amplifier as shown

in figure 4.6. This was achieved by applying a small dither voltage (10 V) to the piezo

electric transducer holding one of the mirrors on the cavity of the second 13CO2 laser,

and fixing the laser frequency to the absorption peak in piezo voltage–absorption

phase space using the lock–in amplifier.

The pressure in the Lamb dip cell had to be very low to reduce homogeneous

broadening and the optimum pressure was found to be approximately 10 mTorr. It

required very little laser power to saturate the transition, so a weak reflection off a

ZnSe slide placed after the the second 13CO2 laser was used in the Lamb dip cell.

The zero order reflections off the diffraction gratings from the Fabry-Perot cavity

of both the primary and secondary 13CO2 lasers were mixed onto a beam splitter,

and detected using a HgCdTe photodetector. The beat signal was monitored using a

spectrum analyser which gave a direct measure of the pump frequency with respect to
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Figure 4.6: The schematic layout for the pump frequency monitor. Mirrors labelled
M, beam splitter is BS and ZnSe slide is SL. The lock–in amplifier applies a 10 V dither
voltage to the piezeo of the second carbon dioxide laser recording the variation in absorption
through the Lamp dip cell and locking the laser to the absorption peak using an appropriate
feedback control.

the line centre of the 15NH3 transition, since the second laser was locked to this. The

frequency drift was measured by fixing the primary pump laser to a particular value

near the ammonia pump transition, and timing how long it took for the frequency

to drift. It was found to be typically 1 MHz/min. There were not enough fast

detectors available to simultaneously measure the pump frequency with respect to

the isotopic ammonia transition while monitoring the pump dynamics (which was

always necessary to ensure the pump remained single transverse mode). However,

it was useful experimentally to check how fast the primary pump laser drifted so

that the relevant parameters could be appropriately varied during the course of an

experiment during a short enough time that the detuning was effectively fixed.
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4.5 Dynamics of the ammonia laser

The Lorenz–Haken laser equations are a simplification of a laser system with many

assumptions such as a single mode, travelling plane wave, incoherently pumped ho-

mogeneously broadened two–level laser in the rotating wave, and slowly varying en-

velope approximations. The initial work of Weiss et al. [63, 85, 86] where an optically

pumped ammonia ring laser was used, had the feature of a unidirectional travelling

plane wave, and the bad cavity condition was satisfied. Despite the fact that laser

transitions at the FIR wavelength are typically Doppler broadened, velocity selected

optical pumping excites the molecules with velocities within the range of the homo-

geneous linewidth of the pump transition. Since the Doppler effect is proportional

to the frequency, this affect will be much less on the FIR transition so that the ho-

mogeneous broadening will dominate in spite of the low pressure. This satisfies the

assumption of a homogeneously broadened laser to a good approximation. The use

of optical pumping introduces three–level effects such as dynamic Stark splitting of

the upper laser level, which is not present in the Lorenz–Haken laser model. More

complex models have been developed to take into account the three–level effects, and

Doppler broadening [87]. These higher order effects can be made to be small so that

the type of dynamics observed in the ammonia laser matches the type of dynamics in

the Lorenz–Haken equations if the laser is operating in a specific parameter range [88].

A review of the characterisation of the chaotic time series and comparison with differ-

ent models is presented in [71]. In chapter 3 a bifurcation diagram was calculated as

a function of two bifurcation parameters, λ the pump strength, and δ the detuning.

It is not possible to create a bifurcation diagram with two bifurcation parameters

experimentally due to drift issues as discussed earlier. Instead one bifurcation pa-

rameter is held fixed and the other parameter is ramped much more slowly than the

average pulsation period of the chaotic pulsations. Figure 4.7 is a bifurcation diagram
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Figure 4.7: A bifurcation diagram constructed using the peak intensity pulsations as a
function of the pump laser power which is linearly ramped.

created using the peak intensity of pulsations as a function of the pump power which

is positively, and negatively ramped in 4.7a, and 4.7b respectively. There are two

bifurcations present in 4.7a at 3.4 W, and 3.92 W which correspond to the lasing

threshold and chaos threshold respectively. When the pump power is decreasing the

above two bifurcation points have changed to 2.7 W, and 3.8 W respectively. The

bifurcation points are not at the same location because the pump power has been dy-

namically varied which causes a delayed bifurcation as discussed in the introduction.

The diagram shows there are abrupt changes in dynamics, in particular the irregular

intensity peaks following the second bifurcation are a good indication of chaos. 4.4),

while recording data during the bifurcation experiment. The pump power is now

held fixed and the cavity detuning is swept slowly and again only the peak pulsations
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Figure 4.8: Bifurcation diagram as a function of detuning which is linearly ramped at
fixed pump power.

are recorded resulting in figure 4.8. It is not possible to independently locate zero

detuning as there were not enough detectors to measure the pump laser frequency

with respect to the peak absorption frequency of the ammonia transition (see section

4.4). As the cavity detuning is swept the period one intensity pulsations increases.

Note that one must view the time series to distinguish period 1 from period 0 in

the bifurcation diagram since only the peak intensity pulsations are recorded. At a

relative detuning of -1.1 MHz period 1 abruptly changes to period 4 as there are now

four lines in figure 4.9 between -1.1 MHz and -1.05 MHz. The time series within that

detuning window is shown in figure 4.9a. Chaos emerges between a relative detuning

of -1.05 MHz and -0.85 MHz where the laser output now abruptly changes to period

2 pulsations lasting until the relative detuning reaches -0.7 MHz. The time series
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within the period 2 window is shown in figure 4.9b where the period 2 pulsations are

decaying towards period 1 because the detuning is continuously ramped.
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Figure 4.9: A close up of the bifurcation diagram 4.8 as a function of detuning which
is linearly ramped. The inset plots (a) and (b) show the time traces corresponding to the
detuning parameter indicated by the arrows.
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Experimentally controlling chaos by

periodically modulating the pump

5.1 Introduction

A system must have at least three degrees of freedom for chaos to emerge. In a system

with two degrees of freedom chaos can be generated by modulation, and many laser

chaos experiments are performed this way [89], with class A and B lasers. System

with at least three degrees of freedom can generate chaos without modulation and are

therefore known as autonomous. Such systems have been studied both theoretically

75
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[65, 90, 91], and experimentally [25, 92]. However, relatively little work has been

done in investigating the properties of an autonomous chaotic system where one of

the parameters is made time dependent [93]. This can increase the complexity of

the dynamics or simplify it. One mechanism for controlling autonomous chaos is to

periodically cross the chaos threshold by varying the pump power [25, 65]. However

this mechanism obviously cannot be used to control chaos if the system is permanently

above the chaotic threshold as discussed in the introduction. It is well known that a

chaotic attractor is wound around a set of unstable periodic orbits [51]. This has led

to the development of algorithms such as the OGY method [34] to select these orbits

and control them. This requires detailed knowledge of the dynamical system, for

example, an accurate estimate of the directions of the unstable and stable manifolds,

in order to estimate how much change should be applied to a parameter in order

to gain control (see appendix A for further details). Thus the OGY algorithm is

suitable for slowly oscillating systems, but the required computation rapidly becomes

intractable for fast oscillating systems.

Other feedback methods require no detailed knowledge of the system. Reported

examples include occasional proportional feedback in a Nd:YAG pumped KTP crystal

forming a multimode autonomous laser [37]; in a diode pumped Nd-doped silica

fibre multimode autonomous laser [94]. Control by subtractive feedback has been

demonstrated in a non-autonomous CO2 laser [95] and an autonomous NH3 laser

[96]. These systems require a priori knowledge of the average period of the chaotic

pulsations, and a subtraction of the measured time series from its value at an earlier

time. Such feedback control is explored further in Chapter 7

Since these methods may not always be appropriate, in this section we experi-

mentally explore an alternative approach, which consists of applying a modulation

to one of the parameters of the dynamical system. This changes the original system,

but for a sufficiently small modulation, the unstable periodic orbits are similar to
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the corresponding orbits in the unmodulated system. Stabilising one of these orbits

should give control as predicted by theoretical studies [51, 91, 97, 98].

To date, only class A and class B lasers have been used in optical studies of

control of chaos by modulation. For example, a non-autonomous class B laser was

controlled by a small modulation of the losses to a periodic state [99]. Subharmonics

of the pump modulation frequency were observed and three different locking ratios

were found. Control of a class B multimode autonomous neodymium-doped yttrium

aluminium garnet (Nd:YAG) laser to stable periodic orbits was achieved by modulat-

ing the laser diode current [100]. In all cases the controlled output contained higher

harmonics of the pump modulation frequency. A large range of locking ratios was

found and chaos was almost suppressed to a dc level when the modulation frequency

was above 25% of the fundamental pulsation frequency. It is interesting that a larger

modulation of the pump power was required to control the dynamics compared to

modulation of the loss in the case of a multimode Nd:YAG laser with an intracavity

frequency doubling titanyl phosphate (KTP) crystal [101]. The corresponding range

of modulation amplitudes to stabilize the chaotic laser for the pump, and loss modu-

lation were 16−60%, and 0.5−2% respectively. A chaotic non autonomous CO2 laser

was controlled by modulating the intracavity losses where the periodic modulation

amplitude was also only a few percent [102]. It seems that control is more difficult to

achieve when the pump is modulated rather than a loss.

Here, we use a chaotic class C laser, which, as was explained in Chapter 3, is

well-described by the complex Lorenz equations [71]. Previous numerical studies of

these equations include modulation of the inversion across the bifurcation point [103],

replacing the Rayleigh parameter with a time dependent term [97], and modulation of

the inversion above the bifurcation point for the real Lorenz equations (corresponds

to a non-detuned laser in Chapter 3) [90]. The real Lorenz equations was extend to

include detuning [104], and it is this system which is explore here.
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We find that there are many regions in modulation amplitude and modulation fre-

quency parameter space, where the dynamics of the chaotic laser frequency lock to the

external periodic modulation. These regions in modulation amplitude–modulation

frequency parameter space, which show the regions where the locking ratio is ratio-

nal, have a definite structure to the shape and are known as Arnold tongues. We

show that a chaotic laser can be controlled to period q when modulated at period

p, and the fractions p
q

belong to the Farey sequence as was found in a non-chaotic

laser [105] and in a bimode laser with a saturable absorber [106]. We find that these

Arnold tongues are very narrow.

5.2 Experimental

As described in detail in Chapter 4, our system consists of an 15NH3 ring laser which

is optically pumped by a 13CO2 laser through a vibrational transition at 10.78 µm.

The lasing occurs through a rotational transition at a wavelength 0.153 mm. We

use a semi-confocal ring cavity as shown in Figure 7.23, to achieve uni-directional

lasing, where the backward travelling wave is chosen in preference to the forward

wave because the A.C. Stark effect splits the gain line in the forward direction [107].

CO Laser

Detector B.

AOM

Chaotic system

2

3NH  laser
Detector A.

Gr

wm

Figure 5.1: Experimental schematic: CO2 laser is the pump; NH3 ring laser is the
chaotic system; Gr is a blazed grating at the pump wavelength (10.78µm) which doubles as
a mirror for the lasing wavelength (153µm); wm is a wire mesh used as an output coupler;
AOM is an acousto–optic modulator; detector A monitors the pump dynamics; detector B
monitors the FIR dynamics.
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Dynamics are optionally imposed on the pump by passing the pump laser beam

though an acousto–optic modulator, AOM. The signal applied to the AOM is pro-

grammed using an arbitrary function generator. We monitor the pump intensity via

the first diffracted order from the AOM. This is detected by a HgCdTe photodetec-

tor A. The dynamics of the far infrared laser are observed by detecting the intensity

of the output field with a fast Schottky barrier diode detector, B, see Figure 7.23.

The signals from both detectors are recorded simultaneously onto a digital storage

oscilloscope.

5.3 Experimental results

5.3.1 Harmonic pump modulation, harmonic generation -

control to period 1

In general, modulation of the pump leads to no noticeable simplification in the dy-

namics. However, we have been able to identify a number of cases where, for specific

ranges of modulation frequency and amplitude, periodic pulsations replace the chaotic

spiking. Four cases are presented here as examples. Because the parameter ranges

where periodic behaviour can be observed are narrow, special care had to be taken

to overcome the effects of unavoidable drifts during the experiment. Only then was

it possible to distinguish consistent and reproducible patterns of behaviour.

We apply a modulation to the pump of the form f(t) = A(1 + sin(ωt)) rather

than f(t) = A sin(ωt), so that we can be sure that the system always remains above

the chaos threshold. This waveform is programmed into an arbitrary function gen-

erator which in turn modulates the amplitude of the RF signal driving the AOM.

The modulation frequency was chosen to be near the average pulsation frequency of

the free running chaos, f0. The lower trace of Figure 5.2 indicates the periods where
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pump modulation was applied. The modulation depth was 20% (peak-to-peak) as

shown on the right hand y-axis scale. The upper trace shows the response of the

FIR laser to this modulation. In order to display a time period much longer than the

time between individual pulses, only the maximum pulse height is displayed which is

calculated from the digitised time trace having 8 bit resolution, so that a horizontal

line represents periodic pulses and each spike represents a Lorenz ‘spiral’ of several

successive pulses of increasing amplitude. It is clear that when modulation is ap-
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Figure 5.2: Control to period 1. The lower trace is a schematic of the dynamics applied
to the pump. The blocks of height 20% represent the period where pump modulation is
applied (the modulation depth is shown on the right hand y-axis). The upper trace is the
peak output intensity of the pumped laser (intensity is shown on the left hand axis). As
this is peak intensity, the flat regions represent period 1 pulsations.

plied, the dynamics of the FIR laser has been transformed and is no longer chaotic.

Figure 5.3a is an expanded view of one of the segments from Figure 5.2. This shows

that Lorenz-like chaotic pulsations exist before modulation is applied to the system,

and a period one signal develops as modulation is applied. The Fourier transform

is calculated for the unmodulated laser output, and modulated output from Figure

5.3a, and shown as the upper trace, and lower trace respectively of 5.3b. The initially

chaotic system possesses a broad spectrum (grey), with three broadened harmonics



5.3 Experimental results 81

2 2.2 2.4 2.6 2.8 3

-1

-0.5

0

0.5

1

In
te

ns
ity

 (
A

rb
. u

ni
ts

)

(a)

 (10 -4 s)Time
0 1 2 3 4 5 6

10
-1

10
0

10
1

10
2

Frequency (MHz)

In
te

ns
ity

 (
A

rb
. u

ni
ts

)

(b)

Figure 5.3: Expanded view from -0.23 ms to 0 ms of figure 5.2. (a) Top trace is the
intensity of the NH3 laser output, lower trace is the pump intensity, (the modulation depth
between 0.25 ms and 0.3 ms is 20%). The modulation frequency is 17.5% of the average
pulsation frequency of the FIR chaos free from modulation, (b) Frequency spectra of the left
(right) hand side of the NH3 intensity trace from (a) are shown as the grey (black) trace.
Note that the broad spectrum of the unmodulated case is transformed into a harmonic
spectrum in the modulated case. The arrow indicates the position of the fundamental
pump modulation frequency.

of the fundamental pulsation frequency. This collapses to a set of sharp well defined

harmonics with the fundamental located at the position of the pump modulation fre-

quency. This shows the transformation from chaos to period 1 pulsations. In Figure

5.4 we examine these spectra more closely. Figure 5.4a is the spectrum of the FIR

laser under modulation, and Figure 5.4b that of the pump. Higher harmonics of the

fundamental are present even though there are only three evident harmonics associ-

ated with the pump. This may be that the laser is amplifying the pump harmonics,

or that output harmonics are generated from a single pump modulation frequency, of

some combination of both.

To analyse the effect of pump modulation on the FIR laser, we take the ratio of

the spectrum during modulation, to the spectrum without, as shown in Figure 5.4c.

A dashed line is added at the 0 dB level to differentiate attenuation and enhancement.

It is clear that most frequencies have been attenuated whilst only the harmonics of
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Figure 5.4: Fourier spectra for (a) the pump modulated FIR laser output, (b) the pump
modulation and (c) the ratio of the pump modulated FIR laser output to the unmodulated
laser output. Triangles indicate the position of the integer harmonics. the dashed line
indicates the position of zero gain, note that only the harmonics of the pump are amplified,
all other frequencies are suppressed.

the pump modulation frequency have been enhanced.

As the laser is initially chaotic before control was applied, we expect that the

dynamics of the system does not immediately change from a chaotic state to a periodic

state at the turn-on of the modulation, but does so after a few cycles of irregular

behaviour. This is most clearly seen from the results of the following experiment.

The laser was modulated at f0 to give period 1 oscillations, then allowed to return

a b c d

Figure 5.5: Schematic of modulation applied to the pump. The pump is modulated
at f0, the fundamental pulsation frequency, for 100 cycles between a and b, followed by a
period of no modulation between b and c, followed by 100 cycles at f0 between c and d.

to its chaotic state (by removing the modulation). Finally the same modulation

was applied to the laser, thus resulting in a return to period 1 oscillations. Figure
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5.5 shows this sequence of events, which allows the laser to develop different initial

conditions between the first and second modulation period of control. Figure 5.6

shows the intensity outputs from both periods. The thin black line is the response to

the first modulation, while the thick grey line is the response to the second. These

lines are different between time zero and 0.014ms, since in this interval the dynamics

are not phased locked to the pump modulation. After 0.014ms, both these intensities

are phased locked, so that the two curves in the graph of Figure 5.6 collapse onto the

phase locked curve.
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Figure 5.6: Two intensity outputs of the laser corresponding to modulation of the pump
to give period 1oscillations. The thin black line is the response to modulation at f0, while
the thick grey line also is a response to the same modulation, but applied after the system
was allowed to return to its chaotic state. Therefore the difference between the two traces
is the result of the initial conditions.

In order to investigate the affect of control on gain of the harmonics, a modu-

lation at the fundamental pulsation frequency was performed on the chaotic laser

operating in four experiments corresponding to slightly different pressure conditions.

In each particular experiment two periods of modulation were separated by periods

of no modulation as shown in figure 5.5, except experiments two and four had an



84
Experimentally controlling chaos by periodically modulating the

pump

additional period of modulation followed by a region of no modulation. Only exper-

iment number one gave control to period 1 during the times where the modulation

was applied. The other three experiments did not give control as the modulation

frequency was shifted slightly from f0. The gain of the harmonics of the modulation

frequency was calculated by taking the ratio of the value of the amplitude of the fre-

quency component at the modulation frequency during modulation, to the amplitude

of the same frequency component when the modulation was turned off. The gain of

the harmonics for the four experiments is labelled Exp1, Exp2, Exp3, and Exp4 in

figure 5.7, where experiment one has been explicitly decomposed into two parts (a),

and (b) which corresponds to the first, and second part of the modulation sequence

from figure 5.5. In both cases control to period 1 was obtained. The four sets of
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Figure 5.7: In four experimentControl to period 1 in slightly different conditions. ‘P1’
represent period 1 behaviour, and ‘no P’ means the dynamics was not periodic.

experiments were performed under slightly different pressure conditions, which has

altered the value of the average pulsation frequency f0, that ranges from 0.8 MHz to

1.23 MHz, and the corresponding modulation frequencies were altered appropriately.
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Experiment one gave control to period one because the modulation frequency was

chosen correctly. However the remaining three experiments did not give control to

period 1 since the modulation frequency was chosen to be displaced slightly from the

correct frequency. Even though the last three experiments did not give control, there

is a significant gain of the harmonics of the pump modulation frequency which is due

to the fact that the applied modulation is very close to resonance. The gain results

of Exp1a, and Exp1b are significantly higher than the remaining three experiments

other than the second harmonic of experiment three as is evident in figure 5.7. The

first and third harmonics of experiment three are significantly lower than the corre-

sponding harmonics of Exp1b. These results show that the gain of the harmonics of

the modulation frequency near resonance is higher when the system is controlled to

period 1.

Generalised synchronisation to period 1

To obtain more information about the period 1 orbit, the pump modulation frequency

was shifted from the value yielding control in five discrete steps. This allowed a

search for different stages of generalised synchronisation. Five different modulation

frequencies of fixed duration were separated equally by a regions of no modulation.

This is shown in figure 5.8 where the time trace is divided into five contiguous segments

(a–e). The duration of the experiment is 1.55ms which is small enough that drift in

the FIR laser, which is of the order 1MHz/min, can be neglected. The constant pump

regions were inserted so that the dynamics could return to the original chaotic state

before the next modulation frequency was applied. Period 1 emerges after a number

of transient pulses as shown in figure 5.8c at the modulation frequency f = 643.6

KHz at an amplitude between 0.05 and 0.1. Control is lost at the other four values

of modulation frequency, although phase locking occurs at f = 630.5, 637.1, and

656.8 KHz where there are no phase slips between the FIR intensity pulsations and
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the driving modulation, and the average frequency is the same. This is evidence of

the second strongest generalised synchronisation, phase synchronisation, where the

first refers to perfect phase locking and high amplitude correlation, i.e. control. At

f = 650.2 KHz there are two phase slips, and the average frequencies of the pump

and the intensity output are different, hence unsynchronised.
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Figure 5.8: Synchronisation and control to period 1. The laser is modulated at five
frequencies 656.8, 650.2, 643.6, 637.1, and 630.5 KHz as shown in the lower trace of (a), (b),
(c), (d), and (e) respectively. No synchronisation occurs at (b) where there are two phase
slips while synchronisation occurs (no phase slips) at (a), (c), (d), and (e). Synchronisation
is strongest at (c) where period 1 develops after some initial transients.

The dynamics during each stage of modulation can be analysed in terms of return

map plots, and the fast Fourier transform (fft) and are shown in figure 5.9(a–e) which
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corresponds to figure 5.8(a–e). At control to period 1, as shown in (c), there is one

distinct point which has some spread due to detector noise, and limited amplitude

resolution of 8 bits. The associated fft shows sharp well-defined peaks, and lack of

broad band structure. The remaining return maps show a lack of regular structure,

and the associated fft spectra show broadened peaks superimposed on a period 1

spectrum.

      
0.06
0.08

0.1
0.12
0.14
0.16

I(
n+

1)

Return Maps 
                                                          (a)

     

-10
0

10

I(
t)

 (
dB

)

Fourier spectra

      
0.06
0.08

0.1
0.12
0.14
0.16

I(
n+

1)

                                                             (b)

     

-10

0

10

I(
t)

 (
dB

)

      
0.06
0.08

0.1
0.12
0.14
0.16

I(
n+

1)

                                                             (c)

      

-10
0

10

I(
t)

 (
dB

)

      
0.06
0.08

0.1
0.12
0.14
0.16

I(
n+

1)

                                                             (d)

     

-10
0

10

I(
t)

 (
dB

)

0.06 0.08 0.1 0.12 0.14 0.16
0.06
0.08

0.1
0.12
0.14
0.16

I(n)

I(
n+

1)

                                                             (e)

0 1 2 3 4 5

-10
0

10

Frequency (MHz)

I(
t)

 (
dB

)

Figure 5.9: The return maps, and fft are calculated for the associated time series in
figure 5.8 during the period of modulation. Control to period 1 is clearly visible as a smeared
point in (c), and sharp well-defined peaks in the associated fft.

Experimentally, control to period 1 could be observed over a narrow range of

pump modulation frequency and amplitude. Changing any one of the parameters by

1% is enough to destroy control. Clearly, experimental drift issues would need to be
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addressed before undertaking a full map of the parameter space, but these results are

enough to show that control is possible, but it is not easy to achieve.

5.3.2 Harmonic pump modulation, subharmonic generation

- control to period 3

We also found that it is possible to control states to higher integer periods (e.g.

pattern repeats every 3 pulses). Figure 5.10 is similar to figure 5.3a except now the

pump modulation frequency is only 4% higher than the average pulsation frequency

of the unmodulated chaos f0 which was 0.96 MHz, rather than 82.5% of f0 which was

0.69MHz for the experimental conditions used in figure 5.3a. It shows that the laser

takes many cycles before it settles down to period 3 pulsations, and that the period

3 behaviour is not perfectly regular.
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Figure 5.10: Control to period 3 after many pulses of instability. Same conditions
as Figure 5.3a except that the modulation frequency is now 4% higher than f0 of the
unmodulated chaos.

We believe this is due to the sensitive dependence on modulation frequency relative
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to the natural pulsation frequency of the ammonia laser which in turn depends on the

frequency and power of the pump laser, both which are subject to jitter and drift. In

the frequency domain it is clear that the dynamics of the laser has been simplified, as

is evident in Figure 5.11. The frequency spectrum for the FIR laser output is shown

on the upper trace, and the pump spectrum on the lower trace. Note that we are

pumping near the fundamental frequency f0, and we generate rational subharmonics

at 1
3

f0 and 2
3

f0, indicated by f1 and f2 in figure 5.11, which are not present in the

pump. Higher harmonics such as 4
3

f0 and 5
3

f0 are present as well as integer multiples
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Figure 5.11: Control to period 3. Lower trace is the frequency spectra of the pump
where the modulation frequency is indicated by a dot. The upper trace is the frequency
of the FIR laser during modulation. f0,f2,f1 indicate the fundamental pulsation frequency
f0, and the rational subharmonics 2

3 f0, and 1
3 f0 respectively. Note the presence of higher

harmonics of these frequencies.

of all rational harmonics.

Generalised synchronisation for period 3

As shown in figure 5.12a five regions of different modulation frequencies were sepa-

rated equally by regions of no modulation as shown in the lower traces starting at



90
Experimentally controlling chaos by periodically modulating the

pump

1.45ms in figure 5.12a, and ending at 3ms in 5.12e. Control to period 3 is shown in

figure 5.12(e), and (d) which correspond to a modulation frequency of 620.2KHz, and

643.3KHz respectively, and amplitude of approximately 0.05. Control is lost outside

these values but at f = 643.3KHz, and 650.0 there is phase synchronisation in both

cases since there are no phase slips, and the average frequencies of the pump mod-

ulation and the FIR intensity pulsations are the same. Increasing the modulation

frequency further breaks the synchronisation since now there are two phase slips, and

the average frequencies of the pump and FIR laser are no longer equal.

The dynamics can be analysed using return map analysis, and calculating the

(fft), and is shown in figure 5.13(a–e), which corresponds to figure 5.12(a–e) during

the modulation region. The return map of the period 3 orbit has three distinct points

which have some spread due to noise, and limited amplitude resolution of 8 bits. The

associated fft shows well-defined sharp peaks as shown in figure 5.13 (e), and (d). The

remaining plots lack a regular structure in the return maps, and sharp well-defined

peaks in the fft spectra, although there are hints of period 3 in the spectra of the

synchronised regions in (b), and (c).

The time differences between adjacent pulse peaks were calculated by fitting a

quadratic curve to each pulsation peak in the time series, and obtained an improved

estimate of the true peak by extracting the maximum value of the analytic curve,

which also gave the associated time for that peak. This procedure was applied to

the FIR intensity time trace during the modulation regions, and the variance was

calculated using a time difference vector, and the period of the pump modulation as

the mean. The controlled state from figure 5.12e gives the lowest variance as shown

in figure 5.14.

We found that the laser output contains harmonics of the pump modulation fre-

quency when it was chosen to be about 10% higher than f0. However, if we bring

the modulation frequency to within a few percent of f0, we find that subharmonics
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Figure 5.12: Synchronisation and control to period 3. Five different modulation fre-
quencies are applied to (a), (b), (c), (d), and (e) corresponding to 656.5, 650.0, 643.3, 636.8,
and 630.2 KHz respectively. The intensity dynamics is uncontrolled in (a) both in amplitude
and phase. Synchronisation occurs at (b), and (c) where there are no phase slips, but the
intensity is not controlled. The intensity dynamics is controlled to period 3 at modulation
(d), and (e) where both phase, and amplitudes are locked.

emerge in addition to the pump harmonics. The frequency width of the control win-

dow was calculated to have a lower bound of 1% at an amplitude of about 0.05 which

is preceded by synchronisation of frequency width 1%. Once the system lies within

the synchronised region then control can be easily found from this position since it

lies within the synchronised region.
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Figure 5.13: The return maps and fft of the associated intensity time traces from figure
5.12 are calculated. Control emerges as distinct point (with some spread) in the return
map, and distinct sharp peaks in the fft.

5.3.3 Subharmonic pump modulation, subharmonic genera-

tion - control to period 1

Consider the chaotic spectrum of Figure 5.3. The results of the last two sections were

obtained by modulating at a frequency near to the first peak of the chaotic spectrum,

f0. If we instead modulate at half this frequency, Figure 5.15 shows the result. There

is transient behaviour for approximately 20 cycles before the FIR laser output is

controlled to period 1 at f0. This is clearer in the associated frequency spectrum shown

in Figure 5.16 (a) and (b). As previously, there are sharp well defined harmonic peaks
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Figure 5.14: The standard deviation of the FIR orbit periods to the period of pump
modulation. The deviation is lowest at the controlled state (e) from figure 5.13,

in the FIR laser output spectrum which shows periodic behaviour. However, now the

main pulsation frequency of the laser is at twice the pump modulation frequency.

Figure 5.16 (c), the ratio of the modulated to the unmodulated spectra, shows that

the enhancement of 1
2
f0 (located at 0.4 MHz) is slightly larger than at f0. However the

time trace in Figure 5.15 clearly shows the main pulsation frequency to be at f0, not

at 1
2
f0. This is evident in the FIR output spectrum in Figure 5.16a since the signal at

f0 is larger than at 1
2
f0 due to the fact that the baseline at f0 is higher than at 1

2
f0. This

suggests that the mechanism for control could be that the unstable periodic orbit at

1
2
f0 has been stabilised, or that the second harmonic of the pump, is stabilising the

unstable periodic orbit f0 of the FIR laser. The presence of these two harmonics in

the pump dynamics makes this distinction ambiguous.

5.3.4 Subharmonic pump modulation and subharmonic gen-

eration - control to other periods

We now look for locking ratios other than 1/1, which is the ration of the pump

modulation frequency to the FIR pulsation frequency, with the aim of stabilising
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Figure 5.15: Control to period 1 from an initially chaotic state. Upper trace is the FIR
laser intensity output, lower trace is the modulation applied to the pump at 1

2 f0.

other unstable periodic orbits that may exist. We do this by systematically stepping

the modulation frequency with a fixed amplitude to search for periodic outcomes.

Figure 5.17 is a graphical description of this experiment. The lower trace shows the

variations in pump power imposed by the AOM. We fix the amplitude and reduce the

frequency of modulation in five discrete steps each of which lasts about 100 cycles.

These are separated by unmodulated periods lasting the same amount of time. This

is schematically (the actual frequency is too high to represent) shown as sine waves

separated by horizontal lines in Figure 5.17. This sequence is sandwiched between

two ramp functions.

The purpose of the ramp is to locate the chaos threshold for the laser system. This

was used to check that the modulation sequence remained above the chaos threshold

in spite of any parameter drift. The upper trace shows the FIR laser response to

these events. For display purposes, only the maximum pulse height is shown.

The first modulation applied in the sequence is labelled “100”. The dynamics

shown in the upper trace is no longer Lorenz-like but more complicated. (This is
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Figure 5.16: Fourier spectra for (a) the pump modulated FIR laser output, (b) the pump
modulation and (c) the ratio of the pump modulated FIR laser output to the unmodulated
laser output. Triangles indicate the position of the integer harmonics, and the stars indicate
multiple of the half integer harmonics. The dashed line indicates the position of zero gain,
note that the harmonics and subharmonics of the pump are amplified, all other frequencies
are suppressed.

not apparent in Figure 5.17 because of aliasing in the printing). As the frequency

is reduced (99) the dynamics is still not simplified. However there is a small section

in the time series where the signal is period 4 before complicated dynamics takes

over. When the frequency is reduced further (98) there is a small period of transient

behaviour at the start of the modulation but the intensity quickly settles down to

period 4 pulsations and remains there until the modulation is turned off. This is

shown in more detail in Figure 5.18. Decreasing the modulation frequency further

(97) destroys any period 4 behaviour in favour of complicated dynamics, although

there now is a small section in the time series where period 7 emerges as can be

seen at approximately 2.82ms in figure 5.19, but doesn’t persist for the modulation

duration. Finally, decreasing the frequency by one more step (96) results in the

intensity following a period 7 orbit after a relatively short initial irregular behaviour
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Figure 5.17: The lower trace represents the dynamics applied to the pump. This con-
sists of a triangle waveform of low frequency, followed by five sinusoidal waveforms labelled
100,..,96 (with relative frequency 100,..,96 respectively), and are 656.7KHz, 650.1KHz,
643.6KHz, 637.0 KHz, and 630.4KHz respectively, followed by another slow triangle wave-
form. The triangle waveform is used as a diagnostic to locate the chaos threshold. The
five sine waves represent a systematic stepping through the frequency parameter at fixed
amplitude. This gives us information on how close controlled orbits are in frequency, and
the width of control. The upper trace is FIR laser output where only the intensity pulse
peaks are displayed.

as shown in figure 5.20. These results are typical. It is instructive to analyse the

dynamics of the system by constructing a Lorenz Map from the intensity data. This

is a plot of the peak intensity of a pulse against the peak intensity of the previous

pulse [61]. For a Lorenz-like chaotic system a cusp shaped curve is traced out [108].

Figure 5.21 shows the Lorenz Maps of the chaotic system (a) without modulation

and (b) with modulation for the period 4 case. Without modulation there is the

characteristic cusp shape indicative of chaos. With modulation four definite regions
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Figure 5.18: Expanded view of the third modulation segment labelled “98” in figure
5.17. This shows period 4 pulsations exist after 32 irregular pulses after the application of
modulation.

become apparent. A return map is also shown during control to period 7 in figure 5.22

where there are four distinct regions, and the remaining three are all approximately

located at (0.1, 0.1) and cannot be distinguished. All points are connected by lines to

give time ordering information, so that periodic behaviour can be easily distinguished

from a non-periodic signal or chaos, since a period n signal will appear as an n-

sided polygon. The lines outside this polygon are due to the transient behaviour

before control. This behaviour is due to the non-perfect intersection of the attractor

corresponding to the unmodulated chaotic laser, with the attractor of the modulated

laser, and the weak stability of the new attractor as discussed earlier. Sampling error

and detector noise cause the four points of the polygon to have some spread from

an ideal polygon generated from noise-less points. Figure 5.23 (a1) and (b1) are the
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Figure 5.19: Expanded view of the third modulation segment labelled “97” in figure
5.17. This shows a window of period 7 pulsations before chaotic pulsations dominates.

spectra of the modulated FIR laser for period 4 and 7 respectively. The associated

pump spectra are shown on plots (a2) and (b2). The stars in the figure indicate the

positions of the rational harmonics of the fundamental pulsation frequency f0 (largest

peak) of the FIR output. The modulation frequency of the pump for the period 4

and period 7 case are coincident with 3
4
f0, and 5

7
f0 respectively.

To observe the effect of a weakly stable attractor, a modulation is applied which

is just outside the edge of an Arnold tongue. The intensity time trace is displayed in

figure 5.24 where the laser is initially chaotic for half the time, and modulated for the

remainder. There appear bursts of period 4 behaviour at −0.36 < t < −0.3ms, and

at −0.27 < t < −0.25ms which becomes more obvious as these period 4 temporary
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Figure 5.20: Expanded view of the third modulation segment labelled “96” in figure
5.17. This shows control to period 7 pulsations after the application of modulation.

windows are highlighted in the return map of figure 5.25 (lower plot).

The upper return map is calculated from the laser intensity before the modulation

was applied. These results indicate there is a weakly unstable period 4 saddle orbit

which is capable of controlling the system if the trajectory in phase space is sufficiently

“close” to the weakly unstable periodic orbit. Shifting the modulation frequency can

cause this effect to either vanish or lock the system onto a period 4 orbit. This effect

was observed in figure 5.17 where control to period 4 occurred at f = 643.6KHz, and

at f = 637.0KHz period 4 emerged for a few cycles then was extinguished in favour

of non periodic dynamics.

The gain of all the harmonics is calculated for period 4 and period 7 which is
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Figure 5.21: Lorenz Maps of the FIR laser output are constructed from Figure 5.18.
(a) without modulation and (b) with modulation. The cusp shape in (a) is characteristic
of Lorenz-like chaos. The polygon shape of (b) when the points are joined shows period 4
pulsations.

shown in figure 5.26. The first black triangle in the figure with the lowest frequency

corresponds to the gain at this modulation frequency f0. Integer multiples of this

frequency are not present in the pump modulation frequency, but are FIR harmonics

of f0. The fundamental pulsation frequency does not correspond to the harmonic

with the maximum gain because the FIR frequency components at the rational har-

monics are very small when no modulation is present, while there is a significant f0

component. The initially smaller signal is further from the saturation level than the

F0 component so it will have a higher gain when modulation is applied. The funda-

mental pulsation frequency f0 dominates the spectra as seen in figure 5.23 despite

having a lower gain since it initially had a significant component before modulation

was applied.

A similar sequence of modulation was applied to the pump which resulted in the

generation of a period 6 orbit shown in Figure 5.27. The frequency spectra of the

modulated pump and laser output are shown on Figure 5.28. It is clear that the

pump modulation frequency is not on the fundamental pulsation frequency of the
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Figure 5.22: Lorenz Map of the FIR laser output is constructed from Figure 5.20 during
the modulation cycle. A seven sided polygon is traced out where four points are distinct,
while the remaining three points are all located at approximately (0.1, 0.1).

laser output f0, but at 5
6
f0.

These results show that the fundamental pulsation frequency of the FIR laser f0

does not coincide with any of the harmonics of the pump, since control to period

4, 6, and 7 required a modulation frequency of 3
4
f0,

5
6
f0, and 5

7
f0 respectively. From

the time domain we know that the pump modulation and the FIR laser output are

phase locked. This shows that there are three Arnold tongues with locking ratios 3:4,

5:6, and 5:7 respectively. For the real Lorenz equations, locking ratios of the form

(l − 1) : l and (l − 2) : l were predicted for l > 10 [90]. In our case l was 3, 4, and 5

respectively.

It has been found that the dependence of the locking ratios on a control parameter

forms a devil’s staircase in the circle map [109] and in the Bonhoeffer Van der Pol

model [110], and is considered to be a universal phenomenon. The devil’s staircase

is made up of rational numbers belonging to the Farey sequence. That is, given

two locking ratios p
q

and r
s

there can be another locking ratio of p+r
q+s

restricted to

|ps − qr| = 1. We have found six of these locking ratios; 1:1, 1:2, 1:3, 3:4, 5:6,



102
Experimentally controlling chaos by periodically modulating the

pump

-20

0

20
(a1)

-20

0

(a2)

-20

0

20
(b1)

0 1 2 3 4

-20

0

Frequency (MHz)

P7
 P

um
p

   
(d

B
)

(b2)

P4
 R

es
p

   
(d

B
)

P4
 P

um
p

   
(d

B
)

P7
 R

es
p

   
(d

B
)

Figure 5.23: Fourier spectra for two different harmonic generation experiments: a1, and
b1 are the spectra of the FIR laser during modulation to give periods 4, and 7 respectively.
The corresponding dynamics applied to the pump are shown in a2 and b2 respectively.
The triangles indicate the position of the integer harmonics, while the stars indicate ra-
tional harmonics. In both cases the maximum peak in the FIR spectra correspond to the
fundamental pulsation frequency of the unmodulated chaos.

and 5:7. These lie on six stairs of the devil’s staircase on a graph of locking ratio

against modulation frequency. We cannot explicitly assign lengths to each of these

stairs as the modulation frequency could only be altered in discrete steps (1%). To

get an estimate of the lengths of each of the stairs we return to the experimental

data summarised in Figure 5.17. The segments labelled (99) and (97) show windows

of period 4, and period 7 respectively, before complicated dynamics takes over as

mentioned earlier. This is not a simple phase slip of the period 4 and period 7

orbits, as can occur at the boundary of an Arnold tongue [111]. Therefore these

two segments lie outside the Arnold tongues, and hence we can be sure that the

width of these tongues is less than 1% for a modulation depth of 20%. The period
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Figure 5.24: Almost control to period 4 where bursts of period 4 occur at −0.36 <
t < −0.3, and −0.27 < t < −0.25 (in milliseconds), but are uncontrolled outside these time
windows.

4 and period 7 orbits which briefly appear are the result of the trajectories in phase

space finding a weak period 4 and period 7 saddle orbit. The trajectories follow the

stable manifold for a few periodic cycles before the unstable manifold of the saddle

orbit takes effect and repels it to another torus. Therefore we know the lengths of

the stairs in the devil’s staircase of our data would have an upper bound of 1% of

the modulation frequency, and a non-zero lower bound since these experiments were

repeatable. Thus the narrow width of modulation frequency required to give control

strongly suggests that resonance is taking place, that is the mechanism for control



104
Experimentally controlling chaos by periodically modulating the

pump

                    

0

10

20

in
te

ns
ity

 (
dB

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

10

20

* *

*

*

Frequency (MHz)

in
te

ns
ity

 (
dB

)

         

0.6

0.8

1

1.2

I(
n+

1)

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

0.6

0.8

1

1.2

I(
n+

1)

I(n)

Figure 5.25: The associated fft, and return map for the intensity time trace of figure
5.24 are shown on the left, and right respectively. The upper plots are calculated from the
intensity time trace before modulation (t < −0.47ms in figure 5.24), and the lower plots
during modulation (t ≥ −0.47ms). The dots are at multiples of f0/4 where f0 = 0.76 MHz.
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Figure 5.26: Gain is calculated by taking the ratio of the FIR Fourier spectra during
modulation to without modulation for the period 4 case (a), and the period 7 case (b). The
black triangles indicate integer multiples of the modulation frequency f0. The asterisks
indicate rational harmonics of f0.
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is likely to be stabilisation of the unstable periodic orbit in the modulated system.

Measuring different stages of synchronisation has led to measuring a control width of

about 2% for period 3, and an additional phase synchronised region of similar width

in modulation frequency, which is at least twice the width of the control region for

period 3 and period 1.

Experimental difficulties such as drift of the laser parameters and discreteness of

modulation frequency make it difficult to locate the position of each stable island in

the parameter space. In the next chapter a theoretical treatment is presented that

enables a more systematic exploration of the number and structure of these islands

in control parameter space [104].
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Figure 5.27: Control to period 6. Lower trace is the pump, upper trace is the FIR laser
output
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Figure 5.28: Control to period 6. Lower trace is the frequency spectra of the pump
during modulation, The upper trace is the frequency of the FIR laser during modulation.

5.4 Conclusion

We have demonstrated experimentally for the first time that a single mode class C

laser can be controlled to a periodic state even though it is driven above the chaos

threshold, by applying an appropriate modulation frequency to the pump. It is also

possible to modulate the pump at the fundamental pulsation frequency of the chaotic

laser to generate not only integer harmonics of the pump, but also rational harmonics

that are not present in the pump modulation frequency. We have also shown that

control is not restricted to modulating at the harmonics of the fundamental pulsation

frequency, as pumping at rational values of the harmonic, according to specific values

of the Farey sequence, also gave control. We therefore expect there are other locking

ratios which could give control. We found that the Arnold tongues were close together

but they did not overlap thus allowing control to a unique period for particular

parameter values. The width of the tongues in frequency space is very narrow, since

changing any parameter of the order of 1% destroyed control. It is likely that the
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mechanism for control is stabilisation of one of the existing closely spaced unstable

periodic orbits in the modulated system.
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pump



6
Numerical investigation of controlling chaos

by periodic modulation

6.1 Introduction

Experimental results presented in the previous chapter show that control of Lorenz-

like chaos is possible, so now a numerical investigation of periodically modulating the

pump power is made in the chaotic regime using the complex Lorenz equations. The

model of the equation 3.1 used is discussed in detail in Chapter 3 and the results

can be compared with the experiments. Control of the standard Lorenz equations by

109
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modulation has previously been demonstrated by replacing the Rayleigh parameter,

R, by R(1 + sin(ωt)) [97, 98, 112]. Since we wish to model an autonomous laser with

a modulated pump, we cannot use these results as the transformation from the laser

equations to the Lorenz equations assumes the pump is constant. Different transfor-

mations must be made which do not involve R (see Appendix B). We show here that

when the pump is modulated in our laser model, control to periodic behaviour can be

achieved. The total pump power is made to remain above the chaos threshold at all

times as in the experiments of Chapter 5, thus excluding a simple delayed bifurcation

[65] as the control mechanism.

6.2 The complex Lorenz equations

We investigate numerically the effect of modulating an optically pumped autonomous

ring laser above the chaos threshold. We use the Lorenz equations to model the sys-

tem, which is accurate for a two energy level system, or even a three level system in

certain parameter regimes [87]. Previous experiments have shown that an ammonia

laser, which is an autonomous system, reproduces the same dynamics as the complex

Lorenz equations [71]. The complex equations take into account the possibility that

the cavity resonant frequency is detuned from the atomic resonance in general. Using

this model we search for control to periodic pulsations which could be seen in au-

tonomous lasers, and investigate different locking ratios between the pump and laser

output modulation that may occur. The complex Lorenz equations are:

Ė = −((1 + iδ)E − λP ) (6.1)

Ṗ = −1/σ((1− iδ)P − ED)

Ḋ = β/σ(1−D + f(t)− 1/2(E?P + P ?E)),
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σ = κ/γ⊥ β = γ‖/γ⊥

where E, P , and D are the electric field, polarisation and inversion respectively; δ

is the detuning of the cavity resonance relative to the atomic line center; κ, γ⊥, and

γ‖ are the electric field, polarisation and inversion decay rates respectively; λ is the

average pump, and f(t) is the modulation applied to the pump. The parameters in

the computations performed here are σ = 1.5, β = 0.25, δ = 0.2, and λ = 46 and

are not changed. In our case f(t) = A sin(ωt), and for chaos to occur κ > γ‖ + γ⊥.

This is known as the bad cavity condition since a lossy cavity is required. The pump

parameter is written in the form;

Ip(t) = λ(1 + A sin(ωt)) (6.2)

where λ is chosen such that λ− A > λch where λch is the chaos threshold. Thus the

pump parameter Ip is always above the chaos threshold. Since the energy into the

laser is varying, this directly effects the population inversion. Previous work has been

done using the standard Lorenz equations where the pump parameter λ was replaced

by λ(1+A sin(ωt)) [112]. Unfortunately we cannot use this as a correct description of

modulation applied to a laser, as the inversion is not directly modulated in that case.

Other authors have theoretically found control [97, 103] using the appropriate form

of the modulation for our laser, however the total pump power was below the chaos

threshold at certain times, i.e. there is a t1 and t2 such that λ(1+A sin(ωt)) < λch for

2nπt1 < t < 2nπt2 and n is any integer. This means there is a periodic crossing of the

bifurcation point. It has been shown that such a crossing can result in stabilization

[65]. Here we ensure that λ(1 + A sin(ωt)) > λch for all t so that this mechanism is

not the cause of control.

To ensure that the modulated system was initially chaotic, we integrated equation

7.3 in the deep chaotic regime where λ = 46 and A = 0 (no modulation). Periodic

behaviour was found for certain values of modulation frequency and amplitude. A
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simple algorithm was used to identify periodic behaviour in the intensity time series.

This involved comparing the size of the last intensity peak with multiples of n previous

peaks to give period n, if all the sizes of the peaks were within a prescribed tolerance.

Figure 6.1 shows the Arnold tongues for each period of the signal for pairs of ω

and A. An integration mesh of 1200 points on the ω axis and 12 points on the A axis

was used, since the sensitivity of the system to ω was much greater than to A. Figure

6.1 shows there are islands of periodic response to modulation at various frequencies

and amplitudes of modulation.
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Figure 6.1: Control to different periods with various combinations of ω and A. Dark
points represent control to the period shown by the number near the points. The light
grey band indicates the numerical grid, 1200 × 12. The vertical dashed line represents the
average frequency (of 0.33 units corresponding to the scaled time κt as shown at the end of
the appendix) of the un-modulated chaos where A=0 along this whole line. The grey box
indicates the region where higher resolution calculations were performed shown in figure 6.3

Period 3 dominates the graph near the average pulsation frequency of the un-

modulated system shown as a vertical dashed line. The locking ratio, that is the

ratio of the pump modulation frequency (ω) to the average pulsation frequency of the

intensity, is 1/1 around this line, and p/q further away from this line where p and q
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are integers. The island of period 4 centered around the frequency 0.30has a locking

ratio 3
4
. On the far left of the graph there is an island of control to period 7, which

has a locking ratio 5
7
. Both of these states of control were found in our experiments

[113]. The two corresponding (numeric) time traces show control to period 4 and

period 7 in Figure 6.2 using typical initial conditions. The lower trace in both plots is

the term A sin(ωt). The graph shows that the phase between the pump modulation

and the output intensity is fixed and commensurate, since every 3 and 5 cycles of the

pump for the upper and lower trace respectively, brings the output intensity back to

the start of period 4 and 7 respectively. Further analysis of Figure 6.1 shows that
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Figure 6.2: Two numeric intensity time traces of control to period 4 and 7 respectively
with locking ratios 3/4 and 5/7 respectively using typical initial conditions. The lower
trace in both cases is the modulation, the top trace is the intensity E∗(t).E(t). The time
units are scaled to the cavity decay rate κ as shown at the end of the appendix. To check
for stability we integrated both time traces up to a time of 1500 and found the solution
remained periodic.

the modulation frequency affects the average pulsation frequency, even though the

average pump power remains fixed at the value λ. For example, period 1 shown in

the top far right of figure 6.1 is locked in a 1/1 ratio with the pump, yet the locked

frequency is higher than the un-modulated chaos frequency by about 10 %. Figure
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6.1 spans a large range of parameter space, so we calculated the periodicity for a

particular initial condition over a narrower parameter range indicated by the grey

box in figure 6.1, at a much higher resolution. Figure 6.3 shows the result. Increasing

the density of the integration mesh has revealed dynamics not seen in the previous

calculation. For example, a modulation amplitude of 0.25 in figure 6.1 only shows

control to period 3, however in addition to period 3 figure 6.3 shows period 4, 5, 6, and

7 with a significantly narrower window of control in modulation frequency space than

for period 3. All the periods in this figure have a locking ratio of 1
1
. This result shows

there are even more closely spaced unstable periodic orbits that have been controlled

to a periodic state. The shape of the Arnold tongues in figures 6.1 and 6.3 is similar

to the triangular shapes obtained in modulated periodic oscillators, except that at

higher modulation amplitudes the Arnold tongues become bent due to an increase in

nonlinearity.
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Figure 6.3: Control to different periods with various combinations of ω and A. The
frequency corrensponds to the scaled time κt.

Experimentally we found control to periods 1,3,4, and 7 with a locking ratio of 1
1
,1
1
,3
4
,
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and 5
7

respectively [113]. The amplitude of modulation in all cases was 20% (peak-to-

peak). The numerical model agrees well with control to period 3 but the amplitude

of modulation required for control is higher for period 4, 7, and 1 where it is 60%,

50% and 70% respectively. Since we use only 2000 initial conditions, it is possible

that there are other initial conditions lying on the chaotic attractor which would lead

to periodic behaviour at a lower modulation amplitude.

We now investigate the Lyapunov dimension calculated using the Lyapunov ex-

ponents [55] of the stabilised system caused by the modulation of the pump. The

dimension of the complex Lorenz system was calculated as explained in section 2.2.3,

and is approximately 3.1. If the modulation frequency is not a harmonic of the pul-

sation frequency of the unmodulated laser, or the modulation amplitude is too low,

the dimension remains at about 3.1 as can be seen by the grey lines in figure 6.4

and in figure 6.5. When a periodic state is found, the dominant Lyapunov exponent
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Figure 6.4: This is a plot of the Lyapunov dimension of the modulated system, for
different pairs of modulation frequency and amplitude. The chaotic regions are of dimension
3.1 indicated by the grey lines, and the controlled system to period 4 has integer dimension
indicated by the black triangles, squares and circles, which represent dimension 3, 2 and 1
respectively. The frequency corrensponds to the scaled time κt.

changes from a positive value to zero. All other eigenvalues are negative. If the limit
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cycle is one dimensional, then there will be only one zero Lyapunov exponent, and

the others will be negative. For a two dimensional limit cycle (two–torus) there will

be two zero Lyapunov exponents, and for a three dimensional limit cycle there will

be three zero Lyapunov exponents. We find these types of limit cycle occur in our

numerical results. Figure 6.4 shows control to period 4, and where chaos remains as a

function of modulation amplitude and frequency. The modulation has a much larger

impact on the dynamics of the system at the fundamental pulsation frequency (0.33)

than at the rational harmonic 3
4
f0 (at approximately 0.25). This is most clearly seen

by observing how the dimension of the chaos changes with amplitude and frequency

in both cases. At the fundamental, the dimension of the chaos, even at small mod-

ulation amplitudes, drops slightly below 3.1 at the fundamental pulsation frequency.

0.2
0.25

0.3

0.1

0.2

0.3

1

1.5

2

2.5

3

Modulation Frequency

Period = 7

Amplitude (Arb. Units)

Ly
ap

un
ov

 d
im

en
si

on

Figure 6.5: This is a plot of the Lyapunov dimension of the modulated system, for
different pairs of modulation frequency and amplitude, as in figure 6.4 but for period 7.
The frequency corrensponds to the scaled time κt.

This slight drop in dimension becomes progressively deeper approaching 3.0. Once it

reaches 3.0 then the system is controlled to a periodic state indicated by the triangles

in the figure. At the modulation frequency of 0.25, no such behaviour in the chaos oc-

curs. It remains basically unchanged until the appropriate amplitude is reached, then
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the dimension drops suddenly to 3.0 and the system is controlled. Notice that the

dimension of the stabilised system can change to 3, 2 or 1. Dimension 3 appears first,

followed by 2 and 1 confined within a narrow parameter space. At fixed amplitude,

the dimension of the controlled system depends on the modulation frequency. There

is some maximum width of modulation frequency around 0.33 which gives control;

outside this range the system is chaotic. Figure 6.5 shows similar behaviour except

that control to period 7 with a dimension of 1 is very rare, but dimension 2 is most

common. This is in contrast to figure 6.4 where there were comparable amounts of

control to dimension 1, 2, and 3.

We now investigate the dependence of control on initial conditions. We calculated

a numerical solution to equation 7.3 without modulation (A = 0), and took 2000

(sequential) points lying on the chaotic attractor as the initial conditions for the sys-

tem under modulation (A 6= 0). We do this as we assume the modulated system is

initially free from modulation for a period of time such that the points in phase space

lie on the attractor of this unmodulated system. The modulated system was inte-

grated using the 2000 initial conditions, and for each initial condition we integrated

the equations for different pairs of parameters ω (the modulation frequency), and A

(the amplitude). For these pairs of parameters and initial conditions, the periodicity

of E∗(t) · E(t), the intensity, was calculated. The solution was defined as periodic if

a particular initial condition xi and its neighbour xi+1 or xi−1 also gave a periodic

solution. We found that if this didn’t hold then the solution is not really periodic, as

these points do not give periodic solutions when slight modifications are made to the

integration routine. In the former case the solutions remain periodic. The periodicity

of the signal was then calculated using the last half of the intensity time trace, thus

ignoring any transient behaviour that may have occurred.

Not all the points lying on the initially chaotic attractor ended up on the limit cycle

generated by the application of the modulation. Of the 2000 initial conditions used,
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only a small subset of these points (< 5%) lead to control for a particular modula-

tion frequency and amplitude. One should note that these initial conditions cover

only a very small part of the five dimensional chaotic attractor, so a more exhaustive

coverage is required to make strong claims about basins of attraction, but is compu-

tationally intractable as many billions of initial conditions would be required.

Figure 6.6 is a plot of the locking ratio as a function of the applied modulation
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Figure 6.6: Projection of the four variables: locking ratio, modulation frequency, ampli-
tude, and initial conditions to locking ratio Vs modulation frequency. Only the amplitudes
A=0.25, 0.275, and 0.30 during control to period 7 are labeled. Other points are a mixture of
these three amplitudes and different initial conditions. Scattered points show uncontrolled
behaviour while a solid line represents control to period 7. Notice the scattered points
below the dark lines showing that modulation frequency and amplitude is not enough to
control the system, since the only difference between the line and points here is the initial
conditions. The frequency corresponds to the scaled time κt.

frequency. Each point on the graph corresponds to one of three amplitude values,

A=0.25, 0.275 and 0.3 which are not distinguished in the figure. The scattered points

represent uncontrolled states as the locking ratio is not rational. The grey lines repre-

sent control to period 7 at amplitudes A=0.25, 0.275 and 0.3 which is marked on the

figure. These lines correspond to a locking ratio of 5
7
. All points on the graph corre-

spond to particular initial conditions which in general are different from each other,
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but some are the same. Note that this information cannot be extracted from the

figure. Control is not uniquely determined by modulation frequency and amplitude

alone. This is evident in figure 6.6 by considering the modulation frequency 0.248 and

amplitude marked 0.275. This grey band corresponds to control as mentioned above,

however some of the scattered points below this line also correspond to an amplitude

of 0.275 (not evident in the figure). These points don’t correspond to control as the

locking ratio is not rational. Thus only some of the initial conditions lead to control.

The grey lines of control have a length which is determined by the combination of

the maximum allowed frequency deviation from the center for fixed initial conditions,

and the maximum frequency deviation for a range of adjacent initial conditions. Now

if the frequency is shifted further, control to period 7 is lost for all initial conditions

and amplitudes tested. The resulting locking ratio for each initial condition in this

case will vary from 0.67 to 0.7 as can be seen at frequency 0.241.

Generalised synchronisation

The dynamics near a periodic state is now analysed by searching for generalised states

of synchronisation as was done experimentally in the previous chapter. Figure 6.7a

indicates the regions where control to period 5, 3, and 7 occur as a function of modu-

lation frequency, which was calculated in intervals ∆f = 0.00001. At all other values

of frequency non-periodic solutions were found. The relationship between the phase

slips occurring between the pump modulation frequency, and the intensity pulsation

frequency as a function of modulation frequency is shown in figure 6.7b. The to-

tal phase slips were calculated during the modulation segment which corresponds to

about 4000 intensity pulses, and is labelled “Total”. At the state of control, a low

number of phase slips appears which is either due to transient irregular behaviour

lasting some tens of cycles before the dynamics becomes regular, or a periodic state

which occasionally phase slips without the presence of irregular behaviour during the
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modulation period. To distinguish between these two scenarios, the number of phase
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Figure 6.7: The regions of control to a periodic state as a function of modulation
frequency is shown in (a). The horizontal frequency axis was divided up into 1000 points
where the periodicity of the intensity was determined. No other periodic state were found
at this frequency resolution ∆f = 0.00001, and corresponds to the white region of the
graph. The phase slips between the pump modulation and intensity is shown in (b) and is
labelled “Total”, and “Non-transient”. See text for explanation. The corresponding largest
Lyapunov exponent is shown in the bottom figure indicating a zero exponent during the
regions of control, and positive outside this region.

slips were calculated after the end of the transient behaviour before control emerged

if it existed, and is labelled “Non-transient” in figure 6.7b. On closer inspection the

number of non-transient phase slips is zero for the corresponding periodic states in

figure 6.7a. The phase dynamics of the intensity solution is synchronised to the pump

between 0.3227, and 0.3305 for A = 0.175 which is significantly larger than the regions

of control indicated in figure 6.7a. This window of synchronised behaviour reduces

with amplitude as can be seen by the grey curve in figure 6.7b which corresponds to

A = 0.15. The largest Lyapunov exponent calculated using the Wolf method [114]

discussed in section 2.2.3, is shown in figure 6.7c, and the remaining exponents were

calculated, but are not displayed since they were found to be less than or equal to
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zero, so does not contribute to any instability. Hence the exponent in figure 6.7c can

be considered an upper bound to the entropy of the system by using equation 2.29.

During the regions of control indicated in figure 6.7a, the Lyapunov exponent has

dropped rapidly to zero, therefore the entropy is also zero for the system. The Lya-

punov exponent is positive within the synchronisation region, and begins to decrease

slowly as the modulation frequency approaches the control region. On closer inspec-

tion, there is a significant jump appearing at f = 0.3305 corresponding to the point

of loss of synchronisation. The loss of synchronisation at f = 0.3227 corresponds to a

small but sharp bend in the eigenvalue as the frequency decreases. The width of the

control window is less than one tenth of the width of the window of synchronisation

for period 3, and even narrower for period 5.

The phase difference between the pulse peaks of the intensity, and the applied

periodic modulation is averaged over the duration of the modulation to give an average

phase difference as a function of modulation frequency. This is then normalised to the

modulation period, and the result is shown as a continuous curve in figure 6.8. For

comparison, the period is displayed on the right hand axis as short line segments. The

average phase difference is approximately constant during the regions of control, and

steadily increases with increasing modulation frequency. Synchronisation is destroyed

at an average phase difference of 0.45 which is less than half the pulsation period of

the applied modulation. No synchronisation would be expected at values greater than

1/2 since the next pump pulse will be too close and cause instability. This is clearly

explained in modulated periodic oscillators if we let the phase difference θ in equation

1.1 become slightly larger than half a pulse period so that θ = π + ε for small ε, then

equation 1.1 approximates to

θ̇ = ∆ω + Cε (6.3)

hence the phase becomes unstable.
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These results show that the window of synchronisation is relatively large compared

to the windows of control, and finding the synchronisation region is a useful for

locating the windows of control. Phase control can still be achieved at modulation

frequencies outside the control range.
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Figure 6.8: The average phase difference between the pulse peaks of the driving periodic
modulation, and the pulse peaks of the intensity normalised to the average driving period
as a function of modulation frequency is shown on the left hand axes as a continuous line.
The period of the intensity pulsations is calculated, and the integer values are plotted as
segments which correspond to the period values corresponding to the right hand axis. Non
periodic regions are the regions in between the segments of control. During control the
average phase difference is constant but varies otherwise.

Scaling of phase slips with modulation frequency

Now that the region of synchronisation has been established, and that phase slips

occur outside the synchronised region, the question of how the phase slips scale with

modulation frequency is addressed. Two types of scaling behaviour are discussed in

section 1.2. The first is super long laminar behaviour where the phase slips become
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exponentially rarer as the frequency approaches the value corresponding to the syn-

chronised state, νc. The average time between phase slips is given by equation 1.2

which is,

ln
1

τ
≈ |ν − νc|−1/2. (6.4)

In the second case the phase slips follow a type 1 intermittency, where the average

time between phase slips is given by equation 1.3 and is,

τ ≈ |ν − νc|−1/2. (6.5)

To investigate whether the phase slips here follow the appropriate scaling laws, equa-

tion 6.4 is rearranged,

γ

(ln(n/T ))2
= |ν − νc|, (6.6)

where γ is an arbitrary constant, and equation 6.5 can be rearranged to give,

γ(
n

T
)2 = |ν − νc|, (6.7)

again, γ is an arbitrary constant, T is a time interval taken as 12000 time units,

and n is the number of phase slips which occur in the time interval T . If the phase

slips data from figure 6.7b (grey curve) follow the two scaling laws, then a linear

relationship should be expected between (ln(n/T ))−2 and ν for super long laminar

behaviour, and ( n
T
)2 should be linear with ν during intermittency. These plots are

shown in figure 6.9(a), 6.9(b), and 6.9(c), 6.9(d) respectively. The plots (a), (c),

and (b), (d) correspond to analysing the phase slips on the left, and right edge of

the Arnold tongue respectively, which are located at ν = 0.3234, and ν = 0.3301

for a modulation amplitude of A = 0.15. The left edge of the Arnold tongue is now

considered (ν = 0.3234). As ν is decreased from the synchronised state, plot(a) shows

a linear relationship for 0.322 < ν < 0.3234 before the slope decreases. This suggests
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Figure 6.9: This shows the existence of two scaling laws for phase slips beyond the
synchronised state, corresponding to the grey line in figure 6.7b with modulation amplitude
A = 0.15. The edges of the Arnold tongues are located at f = 0.3234 and f = 0.3301. See
text for details.

that super long laminar behaviour occurs within 0.322 < ν < 0.3234. The smaller

slope at ν < 0.322 indicates that the phase slips occur more often than super long

laminar behaviour. The intermittency scaling rule applies after the region of super

long laminar behaviour occurs. A linear general trend can be seen in figure 6.9(c)

for 0.3215 < ν < 0.3225. This is followed by a smaller slope near the edge of the

Arnold tongue which in means the phase slips are less regular than intermittency.

The combination of figure 6.9(a), and 6.9(c) suggests that there is superlong laminar

behaviour close to νc, followed by intermittency as the modulation frequency ν is

shifted decreased from the synchronised state. The boundary between the two scaling

laws occurs for ν = 0.322 < ν < 0.3225, which may be the region where periodic phase

slips occur, as is explained in section 1.2. For the right side of the Arnold tongue,

figures 6.9(b), and (d) show a similar effect to (a), and (c) respectively. The region of

super long laminar behaviour appears much smaller, 0.3301 < ν < 0.3303, then this
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is followed by intermittency behaviour.

The amplitude of modulation was now reduced so that A = 0.0375 where there

are no islands of control to a periodic state. The resultant scaling plots are shown in

figure 6.10. The width of the Arnold tongue is less than in the previous case due to

the lower modulation amplitude. The edges of the tongue are located at f = 0.3237

and f = 0.3255. Following the same line of argument used to analyse figure 6.9,

plots 6.10(a) and (c) show a linear relationship for ν close to the Arnold tongue

which indicates the presence of super long laminar behaviour. The remaining plots

6.10(c) and (d) show a linear relationship for ν < 0.3225, and ν > 0.327 respectively

indicating the presence of intermittency.

Analysing the two types of scaling laws for phase slips has revealed the presence

of super long laminar behaviour for modulation frequency near the Arnold tongue,

and the presence of intermittency. The boundary between the two is not clear and

may be due to periodic phase slips.

Local stability of the period 1 orbit

The global Lyapunov exponents calculated can show when a system is globally stable.

These exponents however do not give information about localised areas of instability

which may occur within a globally stable system. In particular there may be coexist-

ing stable and unstable segments of a stable orbit, which corresponds to attractive,

and repulsive phases respectively [67]. The local stability of the controlled period 1

orbit is now briefly discussed. A period 1 orbit was obtained by applying a modula-

tion frequency f = 0.35571 and amplitude A = 0.375, that was chosen on the basis

of figure 6.3. A small amount of noise was added to the modulation, but not enough

to destroy the controlled period 1 orbit. This can be compared with the noise-free

period 1 orbit, to obtain information about local stability and instability of the orbit

[115].
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Figure 6.10: This shows the existence of two scaling laws for phase slips beyond the
synchronised state, where no control is present, with modulation amplitude A = 0.0375.
The edges of the Arnold tongues are located at f = 0.3237 and f = 0.3255. See text for
details.

Noise was applied so the resultant modulation was f(t) = Asin(2πft)+NA(noise(t)−
1/2) where the time average of the noise term is 1/2, and the noise amplitude is NA.

The distance in phase space is calculated between the period 1 noise-free orbit at time

t, and the modified period 1 orbit at t due to the addition of noise. Both orbits had

the same initial conditions. This distance is plotted against the time over one orbit

cycle, which is related to the phase of the orbit, and the noise amplitude. At time

t = 0 the phase of the orbit can be defined as zero, so then at t = 2.81 the phase

becomes 2π. The value of the phase at other times along the orbit depends on the

specific definition of phase, which is not unique as discussed in section 3.3. Hence

time is used here to refer to the position along the orbit rather than the phase. The

noise has least impact on the distance at phases corresponding to the times 0 and at

2.5, and the most impact between 1 and 1.5 depending on the noise strength. There

is a rapid increase in distance at a noise level of 0.008 corresponding to 0.8 %. At
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Figure 6.11: The relationship of the distance in phase space between a noise-free period
1 orbit, and a period 1 orbit with noise applied to the pump, is shown as a function of noise
level, and time during one orbit cycle.

larger values the distance curves do not follow a uniform monotonic pattern for each

successive increase in noise strength, and the value becomes comparable to the radius

of the attractor and too large to conveniently show on the graph. Noise generated

from different seeds was used to test if this result was sensitive to the details of the

noise, and it was found that in all cases the distance curves for noise amplitudes less

than 0.006 gave very similar results to figure 6.11. This indicates that the phase of the

orbit corresponding to the smallest distance in figure 6.11 corresponds to a strongly

attracting region of the periodic orbit. The phase of the orbit corresponding to the

peak distance indicates the corresponding region in phase space is less stable, and

may contribute to longer than average number of transient pulses before settling to

period 1.

Stages of synchronisation are now searched near the controlled period 1 orbit. At

the controlled state the Lyapuonv exponent is zero (and hence entropy is also zero) as

shown in figure 6.12a. During control there are only a few phase slips as seen in figure
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Figure 6.12: The period, number of phase slips, and the largest Lyapunov exponent are
shown as a function of driving frequency is shown for an amplitude A = 0.375. Controlled
states are shown in (a), number of phase slips for global (which includes all transient
behaviour), and local (only during the controlled regions) in (b), and the largest Lyapunov
exponent in (c).

6.12b, but the number increases as rapidly as the Lyapunov exponent outside the

control region in figure 6.12c, so there is almost no region of synchronisation outside

the control window. This is unlike the case in figure 6.7 where synchronisation can

occur where the Lyapunov exponent is positive. A possible explanation for this is

that the modulation amplitude for period 1 is much larger than was used in figure

6.7. This causes significant distortions in the attractor of the original system to the

point where the attractor itself is a function of the applied modulation frequency.

6.3 Conclusion

We have shown that the complex Lorenz equations describing an autonomous chaotic

laser, can be controlled to a periodic state by modulating the pump parameter ap-

propriately. We find there exist islands of control to various periods in modulation
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amplitude–frequency parameter space. These islands are accessed only for a subset

of the initial conditions that were used. The width of control in frequency space is

quite narrow, but increases with increasing modulation amplitude. Control is not as

sensitive to the modulation amplitude, although increasing the amplitude sufficiently

can change the period of control. Regions of synchronisation orders of magnitude

wider than the control window were found, and could be used for phase control alone

as an alternative to phase and amplitude control. The nonlinearity of the system

has been successfully exploited since rational locking ratios of the pump to intensity

output gave control. The results are in good agreement with the experimental results

in the previous chapter and show the Arnold tongues have very fine structure which

appears fractal.
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7
Controlling chaos in a Lorenz-like system

using feedback

7.1 Introduction

Control by periodic modulation falls into the category of non–feedback control, and

has been successful in simplifying the chaotic dynamics of the ammonia laser both

experimentally, and numerically as discussed in the previous two chapters. Control

by feedback is an alternative approach which may be simpler to implement than

the non–feedback method. This requires extracting a system variable and feeding

131
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that back into another variable or parameter. In general the extracted signal can be

modified before feeding it back into the system.

The term “feedback control” is often understood in the chaos literature to mean

subtractive feedback. That is, the control signal is expressed in the form F (t) =

G(x(t) − x(t − τ)), where τ is the delay time, and G is some function with the

condition that G(0) = 0. One example is control of a chaotic CO2 laser by feedback

of a variable which has been subtracted from its value at an earlier time [95]. F (t)

can be thought of as an error signal which tends to zero as the system approaches

control, control meaning a periodic state where x(t) = x(t−τ). The advantage of this

type of scheme is that no knowledge of the system other than the average pulsation

period is required (control is achieved only for certain values of τ in the vicinity of the

average pulsation period). Experiments with subtractive feedback on the Lorenz-like

ammonia laser showed that control to periodic and even steady state is possible [96].

The feedback error signal was generated by analogue subtraction using a coaxial delay

line. When the laser was controlled to a periodic state, the feedback signal was itself

periodic, so we can think of this as self-synchronisation. It has also been shown that

this type of laser operating above the chaos threshold could be synchronised to another

chaotic system via feedback to the pump [92]. Here we make a detailed theoretical

analysis of the subtractive feedback system to elucidate the range of conditions under

which control is possible. In an attempt to further simplify the control of chaos we

have examined the possibility of avoiding the subtraction process in the generation

of the feedback error signal. Now if F (t) = G(x(t)) then F (t) is non-zero in general.

This type of feedback has been investigated and is known to destabilize a system in

general [116]. The advantage would be that no subtraction of delayed signals would

be required. We investigate this possibility, which we call here “non-subtractive

feedback”, numerically and experimentally and find that control is in fact possible.
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Necessary condition for control by delayed feedback

A chaotic system with feedback can be described by ẋ = F [x(t), K(x(t) − x(t− τ))]

where the feedback term is represented as K(x(t) − x(t − τ)). This can be used to

stabilise an unstable periodic orbit ξ(t) with period τ so that ξ(t) = ξ(t + τ). The

stability of the orbit can be investigated by applying a perturbation to the orbit to

observe whether the solution diverges, or converges to the orbit. Linearisation of the

nonlinear equations of motion about the periodic orbit ξ(t) gives

δẋ = D1F (ξ(t), 0)δx(t) + D2F (ξ(t), 0)K[δx(t)− δx(t− τ)] (7.1)

where DiF denotes the Jacobian for the ith argument. According to Floquet theory,

the perturbation also satisfies δx(t) = exp[(λ + iω)t]u(t)where u(t) is a periodic

eigenvector, so that equation 7.1 can be written as [117]

[Λ + iΩ] = Γ[K(1− exp(−Λτ − iΩτ))] (7.2)

where Γ is some function, with the boundary condition Γ[0] = λ + iω which is the

unperturbed eigenvalue. The point here is that Ω must be finite (finite torsion) for

the control method to work at all. If Ω is zero then the right hand side of equation

7.2 cannot change from positive to negative, which is required for stabilisation, hence

control will not work. Pyragas found that the standard Lorenz equations 3.1 with

σ = 10, r = 28, and b = 8/3, had zero torsion and hence could not be controlled by

perturbative delayed feedback [118].

The parameters used here in the complex Lorenz equations (see next section for

values) are different to the standard Lorenz parameters. In order that the complex

Lorenz equations can be controlled by the usual delayed feedback (Pyragas) method,

the unstable periodic orbits must have finite torsion. This can be calculated by first

locating a particular orbit to be controlled, then the stability can be calculated using

Floquet theory as discussed above. Finding the unstable periodic orbit is not always
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trivial, and there are a number of methods which have been used to do this. The

Newton-Raphson method [119] was attempted here to locate the period 1 orbit, but

that was unsuccessful. The algorithm was written in FORTRAN and tested on the

standard Lorenz equations (3.1) where the correct value for the Floquet exponent

was found. The robustness of convergence to the unstable orbit using the standard

Lorenz equations, was tested by adding ε to the initial condition lying on the period

1 orbit, and found that changing the initial condition less than 2% was enough to

prevent it from converging to the orbit. The initial period of the orbit had to be

even closer to the true value for convergence to occur. Hence there is only a small

window of convergence surrounding points lying on the unstable periodic orbit using

the Newton-Raphson method. In the complex Lorenz equations, the system has five

dimensions, plus time. This means that a search in 6 dimensions is required to locate

the position and period of the periodic orbit, which proved to be difficult. The author

is aware there are less “brute force” methods available such as the SD method [120],

and others are mentioned in the article by Pingel et al.[121] describing the theory of

detecting unstable periodic orbits. Time did not permit these other avenues to be

explored, hence the question of the existence of torsion for the parameters used here

remains unknown. A lack of torsion may not necessarily prevent delayed feedback

methods from controlling a chaotic system to regular behaviour if the applied feedback

is not a small perturbation. This was tested on the standard Lorenz equations where

the periodic orbit is known to have zero torsion [118], and it was found that control

to periodic behaviour was possible, as will be shown in section 7.2.1.
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7.2 Numerical

We use the complex Lorenz equations in our simulations of delayed feedback on a

chaotic system. The complex Lorenz equations are:

Ė = −((1 + iδ)E − λP ) (7.3)

Ṗ = −1/σ((1− iδ)P − ED) (7.4)

Ḋ = β/σ(1−D + f(t)− 1/2(E?P + P ?E)) (7.5)

where

σ = κ/γ⊥ β = γ‖/γ⊥

E, P , and D are the electric field, polarisation and inversion respectively. λ is the

average pump level, f(t) is the modulation applied to the pump, δ is the detuning of

the cavity resonance relative to the atomic line center; κ, γ‖ and γ⊥ are the cavity,

polarisation and inversion decay rates respectively. In all our simulations the param-

eters are σ = 1.5, β = 0.25, δ = 0.2, and λ = 46. As introduced in Chapter 3, for

chaos to occur the relation between the decay rates must be κ > γ‖+γ⊥ this is known

as the bad cavity condition since a lossy cavity is required.

Variations in the pump power directly affect the population inversion so the feed-

back term appears as f(t). We investigate two cases of feedback, the first being the

form of subtractive feedback [41] f(t) = A(I(t)− I(t− τ)) where I(t) = E(t) · E∗(t)

represents the laser intensity, and A is the feedback amplitude. This type of feedback

was experimentally implemented by driving an acousto-optic modulator (AOM) with

a signal generated using a coaxial cable delay line to perform the subtraction [96]. To

compare these results with our numerical results, we introduce an additional delay

in the feedback loop of our model to account for the propagation delay T within the
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AOM used to convert the error signal into a modulation of the pump power. For

the second case of non subtractive feedback, we dispense with the subtraction step

and set the feedback to be f(t) = AI(t− T ) and investigate the amplitude–feedback

delay parameter space. In both these feedback cases the system is operating well

above the chaos threshold λth so that the average pump level λ is chosen such that

inf(λ + f(t)) > λth. In all our calculations time is scaled [104] as κt which is dimen-

sionless since κ represents the cavity decay rate. Hence the feedback variables T and

τ are also dimensionless.

7.2.1 Control by subtractive feedback

As explained above in all our experiments there was an additional delay T within the

AOM, so we define the feedback term to be

f(t) = A(I(t− T )− I(t− (T + τ))) (7.6)

The difference delay τ is the time between the two measurements of output intensity,

the difference between which constitutes the error signal. The feedback delay is de-

fined as the time T for the feedback signal to enter back into the system. We integrate

the complex Lorenz equations using this feedback term, and for different pairs of pa-

rameters τ , T and amplitude A, construct the time series I(t). The periodicity of I(t)

was calculated for the long term dynamics by waiting until transient behaviour had

passed. The period of the time trace was plotted on the difference delay–feedback

delay parameter space, for periods up to 6. The first result was calculated using a

very weak feedback amplitude 0.0004 and the plot is shown in figure 7.1. Since the

intensity pulsations range between 80 and 120 units, this sets the maximum feedback

amplitude to be about 4% of the average pump power. The average pulsation period

is 3.08 dimensionless time units. Only periods greater than 3 exist for very weak

feedback as is evident in figure 7.1. If the feedback amplitude is increased to 0.001,
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Figure 7.1: Control to various periods by subtractive feedback of maximum amplitude of
0.04% of the pump. The difference delay τ , and the feedback delay T are both dimensionless,
see text for details.

equivalent to 10% of the average pump power, we find this increases the number of

periodic states and leads to the existence of period 0 – the steady state. This is shown

in figure 7.2, and the dashed line indicates the average pulsation period for the chaotic

sytem without feedback (3.08). Many of the features in the weak feedback case in

figure 7.1 are evident in figure 7.2, such as the rings of period 4 in parameter space. In

the stronger feedback case, these rings have been distorted and the positions shifted

slightly. These rings contain regions of control to less than period 4 where period 0

dominates. As might be expected, islands of control exist at multiples of the average

pulsation period along the feedback delay axis. The same applies for the difference

delay axis. If we leave the feedback amplitude at 0.001 but change the sign of the

feedback to negative, the result is shown in figure 7.3. There are similar structures

here as in the previous figure except that the islands are displaced half an average

pulsation period upwards. This can be understood by considering the change of sign

of the feedback term to be equivalent to a phase shift of half a period. These well

defined islands of stability are destroyed if the feedback amplitude is too large. We
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Figure 7.2: Control to various periods by subtractive feedback of maximum amplitude
10% of the pump. The difference delay is τ , and the feedback delay is T .

increased the feedback amplitude to 0.006 which would correspond to an average of

60% of the average pump power. The result is shown in figure 7.4. Since the feedback

amplitude modulation is so large it is no longer perturbative and the system is no

longer Lorenz like. Figure 7.4 shows there are now islands of control which are not

at multiples of the average pulsation period of the unperturbed system in either the

difference delay axis or the feedback delay axis. The size of the period 0 islands are

significantly smaller in the strong feedback case compared to the moderate feedback

case as in figure 7.2. One would expect the islands to be smaller since if the system

isn’t very close to the periodic state, then the large feedback amplitude drives the

system quickly away from the periodic state. Previous experiments [96] showed that

the laser was controlled to period 0 when the feedback amplitude was 3% and 7%.

The difference delay τ used was about one laser pulse period. Control to period 1, 2,

4, 6 was observed at 5% modulation depth. Numerically, we found control to period

0, 1, 3, 4, 5, 6 with a modulation depth of 10% for the second multiple of the average

pulsation period as well as the first multiple. We did not find any period 2 at this
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Figure 7.3: Control to various periods by subtractive feedback of maximum amplitude
10% of the pump. The difference delay is τ , and the feedback delay is T . The error signal
has been inverted with respect to figure 7.2.

amplitude. This could be due to the fact that numerically we calculated the period-

icity of intensity traces that contained about 1000 pulsations. The experiments have

the limitation that during control only about 70 pulses could be recorded. Thus it

is possible that what appeared to be period 2 was actually a long transient which

eventually approaches period 1. This is always a problem with any finite time series

since one cannot be sure whether the dynamics in a finite time series is permanent or

transient.

Control to period 1 was not found around τ = 3, and T = 0, for A ≤ 0.001 which

corresponds to the region where the original Pyragas method [40] is expected to work

subject to the torsion condition. When the feedback amplitude was increased, period

2 emerged that wasn’t present in the lower modulation cases, and period 1 was found

at τ = 3, and T = 0 as shown in figure 7.5.
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Figure 7.4: Control to various periods by subtractive feedback of maximum amplitude
of 60% of the pump. The difference delay is τ , and the feedback delay is T .

Effective modulation depth

The feedback may not be perturbative so the size of the modulation depth is calculated

for period 1 from figure 7.5. This was achieved by recording the maximum peak of

the feedback signal during control to period 1, and multiplying it by the feedback

amplitude A. The resultant value is divided by the steady state pump power, which

appears as ‘1’ in equation 7.5 due to normalisation. The modulation depth as a

function of τ and T is shown in figure 7.6. The maximum modulation depth of

about 15% occurs approximately in the centre of the period 1 islands for T = 3 and

T = 6, which correspond to the feedback delay values τ = 1.5 (equivalent to 1
2
T1)

and τ = 4.5 (equivalent to 3
2
T1) respectively, where T1 is the pulsation period for

period 1. Shifting in either direction in (τ, T ) lowers the effective modulation depth,

as one would expect since x(t) − x(t − τ) is largest at half integer multiples of T1.

This phenomenon occurs for the four period 1 islands located at T = 3 and T = 6.

The situation is different for T = 0 since the modulation depth is minimum at τ = 3

(< 5%), and very large (30%) at other values of (τ, T ) within the period 1 island.
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Figure 7.5: Control to various periods by subtractive feedback of maximum amplitude
of 14% of the pump. The difference delay is τ , and the feedback delay is T .

These results show that the modulation depth quickly increases as a small loop delay

is introduced to the original Pyragas method, but for delays T that are multiples of

period 1, the modulation depth can be reduced to reasonable values.

The standard Lorenz equations 3.1 are torsion free, so it is useful to investigate

if periodic dynamics can be achieved using moderate amplitudes, so that modulation

depths can be compared with the complex Lorenz equations. Applying feedback to

the standard Lorenz equations generates periodic orbits as shown in figure 7.7. There

is no period 1 orbit stabilised with a period of 1.5586, corresponding to the unstable

periodic orbit [118], as forbidden by this system. However, there are many islands

of control at other delays and feedback amplitudes. As the amplitude increases, one

would expect control to become more likely since the dynamics of the system becomes

slaved to the drive. It appears that the modulation amplitude is not large in figure 7.7.

This can be confirmed by similar analysis to figure 7.6 where the modulation depth

now is a function of only one delay (difference delay), and the feedback amplitude.

The result is shown in figure 7.8, where the effective amplitude can be as low as 0.2%,
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Figure 7.6: Effective feedback modulation strength during control to period 1, as a
function of the difference delay τ , feedback delay is T . The feedback amplitude is A =
0.0014.

and over 30% depending on τ and A for the period 1 islands. These results show

that the effective modulation depth for the complex Lorenz system with a feedback

delay is comparable to the standard Lorenz equations without a feedback delay (or

loop delay), and only a difference delay. One would expect that the additional loop

delay would increase the error signal, since the correlation of the current signal to the

delayed value is finite, and typically not very large.

All the previous results were obtained using Lorenz–like chaos where the detuning

δ = 0.2. The complex Lorenz system can generate chaos which evolved from a period

doubling bifurcation, so for completeness, control was implemented for this type of

chaos. The detuning was chosen on the basis of figure 3.3 where a period doubling

route to chaos was obtained without additional windows of stability appearing, as can

occur for other values of detuning (e.g. δ = 0.375 has only a small band of chaos),

hence the detuning was set to δ = 0.42. The result is shown in figure 7.9. There are

four large islands of period 2 surrounded by 4 windows located at (1.5, 1.5), (1.5, 4.5),

(4.5, 1.5), and (4.5, 4.5). The period 0 islands are significantly smaller than occurs
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Figure 7.7: Control to various periods by subtractive feedback using the Pyragas
method, for various feedback amplitudes and difference delays, τ Parameters are σ = 10,
β = 8/3, r = 28. The intensity is fed back the ż equation.

in figure 7.2. Period 3 also appears to be more extensive for the controlled period

doubled chaos, rather than the observed in figure 7.2.

A simple way to see how an unstable orbit can be stabilised by subtractive feedback

is to consider an unstable oscillator of the form ẍ− αẋ + kx = 0 which is oscillatory

unstable for α > 0 and k > α2

4
. A subtractive feedback signal can be applied to the

system to give ẍ − αẋ + kx = −A(x(t) − x(t − (T + ε))), where x(t) = x(t + T ) at

control. The feedback expression can be expanded using perturbation theory and it

is easy to show that both the initially positive eigenvalues of the linearised system

become negative for A > α
T

assuming small ε.

Returning to the numerical results in the figures, The islands of stability have a

definite preferred orientation, in particular the period 0 islands all have a slope of

−1
2
. This can be understood the following way. Period 0 occurs after the oscillation

is completely damped so just before it is extinguished it is a sinusoid to a good

approximation. So we can write the signal as f(t) = a sin(ωt) and the delayed signal
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Figure 7.8: Effective modulation depth as a function of the difference delay (τ), and
feedback amplitude for the standard Lorenz equations.

will be f(t + τ) = a sin(ωt + φ)), where φ = ωτ is the phase difference between the

two signals due to the subtraction time τ . Since

f(t)− f(t + τ) = −2a sin(
φ

2
) cos(ωt +

φ

2
) (7.7)

the generated difference signal has an effective delay equal to half the delay τ within

the control island. This can be compensated by an equal but opposite change in the

feedback delay T .

Linear stability analysis

We now look at the stability of the fixed points of the nonlinear system to gain some

insight into the mechanism of control. The eigenvalues of the feedback system cannot

be obtained analytically since the determinant of the Jacobian is a transcendental

function, so this can only be solved numerically. There are an infinite number of

complex solutions to this type of equation in general, and the system will be stable

if all the eigenvalues are negative. We search the same parameter space as in figure
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Figure 7.9: Control to various periods by subtractive feedback for period doubling
chaos. The detuning is δ = 0.42, A = 0.001, the difference delay is τ , and the feedback
delay is T .

7.2 and set A = 0.001 and plot (figure 7.10) whenever all the eigenvalues of the

determinant of the Jacobian are less than or equal to zero. Without the feedback

(f(t) = 0 in equation 7.3) the eigenvalues of these fixed points are positive. It is

clear that the position of the islands of control to period 0 and period 1 are contained

within the islands in figure 7.10. This shows that the eigenvalues of the fixed points

of the system are all negative during control to period 0 and period 1. Control to a

periodic state by stabilising an existing unstable periodic orbit of a chaotic attractor

has previously been demonstrated experimentally and theoretically as discussed in

the introduction. These methods of control rely on the system having a reasonable

probability of visiting the desired unstable periodic orbit where a control mechanism

can take full effect. This is not the case for period 0 since the system never visits the

unstable fixed point [122]. We overcome this by applying the feedback. This changes

the stability of the unstable fixed points, allowing an initially inaccessible region of

phase space to be visited for certain values of feedback parameters such as shown in

figure 7.10.
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Figure 7.10: Islands represent the non positive Lyapunov spectrum of equation 7.3 for
the feedback parameter A = 0.001 The difference delay is τ , and the feedback delay is T .

In previous feedback experiments [96] and in our experimental results following

this section, the feedback signal to the laser system is a.c. coupled. This will only

give a non zero final error signal if the unfiltered error signal is varying with time,

and a constant unfiltered signal will appear as zero final error signal. To check what

effect this might have, we include this effect in our model by applying a high pass

and a low pass filter to f(t), based on RC circuit theory, and using this modified f(t)

as the feedback signal in the differential equations. These are

ḟ1 =
−f1(2 + R1.C1

R2.C2
)− f2

R2C2
+ 2İ(t)

R1.C1
(7.8)

ḟ2 = f1 (7.9)

where the low pass cut off frequency is ωmax = 1
R1.C1

, and the high pass cut off is

ωmin = 1
R2.C2

. The signal to be filtered enters the equation as İ(t), and the filtered

output is f2. The high pass filter models the a.c. coupling while we also include a low

pass filter to model the finite bandwidth of the AOM. We apply this procedure to the

subtractive feedback case and the results are shown in figure 7.11. In all cases the
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high pass cut off is set to 0.01 and the low pass cut off is 6, 2, 1, 0.85, 0.75, and 0.5

in (a), (b), (c), (d), (e), and (f) respectively. The characteristic pulsation period is

3.08, where time has been scaled to the parameter κ. The cut off frequency in 7.11(a)

is three times the average pulsation frequency which results in only a slight decrease

of the fundamental frequency, allowing control to proceed. As the cut off frequency

decreases, there is a greater attenuation of the fundamental frequency which gets fed

back into the equations. This results in an effectively lower modulation amplitude at

the fundamental frequency and therefore the range of control becomes narrower. This

is evident in the figure 7.11(a-f) where the islands of control retain their orientation

but decrease in size. These results with the inclusion of a.c. coupling and bandwidth

limitation to the feedback system are essentially the same as for the unfiltered case.

There is only a significant difference when the bandwidth of the feedback signal is

equal or less than the characteristic frequency of the system, and this just causes the

control islands to shrink and become destroyed if the bandwidth is much less than

the characteristic frequency.
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Figure 7.11: Control to various periods by subtractive feedback for different high pass
cut off values ωmax. In (a), (b), (c), (d), (e), and (f) the high pass cut off frequencies are 6,
2, 1, 0.85, 0.75, and 0.5 respectively. The low pass cut off in each case is 0.01.



7.2 Numerical 149

7.2.2 Stability of control and generalised synchronisation

The windows of control in parameter space were found in the previous section, and

they show the final dynamical states of the intensity solution for a range of feedback

amplitudes. As discussed earlier the periodic states were calculated ignoring initial

transient behaviour that may have occurred before control emerged, and non periodic

states were discarded. To gain more information about the dynamical states near

control the behaviour of the system must be considered over the entire range of the

feedback parameters, and less strict measures are needed that quantify dynamical

states other than periodic.
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Figure 7.12: The period as a function of the difference delay τ for a fixed feedback
delay T = 3 is shown in (a) for feedback amplitudes A = 0.001 (black), A = 0.00075 (dark
grey), and A = 0.0005 (light grey), and white regions represent a non periodic solution. The
average phase difference between the intensity solution, and the feedback signal is shown in
(b), and the symbols indicate the average phase slips during a particular controlled state.
The largest Lyapunov exponent is shown in (c).

The results from figure 7.2 are recalculated for three values of feedback amplitude

A = 0.001, A = 0.00075, and A = 0.0005 for a fixed feedback delay T = 3, and

a number of measures were calculated as a function of the difference delay τ which

ranged from 0.15 to 6. A coarse measure is to compare the average frequencies of
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the intensity solution, and the applied feedback solution. The difference between the

number of cycles of the intensity, and feedback solutions were used instead of average

frequency, then this difference is accumulated over the duration of the feedback, and

converted to phase which is labelled “average phase difference” in figure 7.12b. For

comparison the periodic states are displayed in figure 7.12a which corresponds to the

strongest form of synchronisation–perfect synchronisation. The black line (A = 0.001)

is a horizontal slice through T = 3 in figure 7.2, and the resolution has been increased

by an order of magnitude along the τ axis. The frequency difference between the

intensity, and feedback solutions is zero during the regions of control to a periodic

state, and for τ < 0.76. The amplitudes and phases of the two solutions are uncor-

related or highly complex so this is the weakest stage of generalised synchronisation.

The Lyapunov exponents were calculated using the Wolf algorithm [114], where the

feedback term f(t) was taken as constant at each integration step, since the past

solution is necessarily stored as a discrete vector. This may lead to some inaccuracies

but is much computationally faster to calculate than solving the infinite dimensional

problem with a finite number of ordinary differential equations. Hence the Lyapunov

exponents shown here are only used as a guide, and an approximate estimate of the

entropy of the system using equation 2.29.

Only the largest exponent as a function of τ is displayed in figure 7.12 since

the remaining exponents were either zero or negative. The exponent drops to zero

during the regions of control, and approximately a constant positive value otherwise.

This measure is almost as strict as the calculation of the periodicity. However it

shows how quickly control is extinguished at the end points of the control window

for 0.76 < τ < 2.15, and 3.73 < τ < 4.88. The above analysis is repeated for

amplitudes A = 0.00075, and A = 0.0005 and is shown as dark grey, and light grey

lines respectively in the three graphs of figure 7.12. At A = 0.0005 there is no

control to a periodic state other than a few isolated points which appear in figure
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7.12a, and the Lyapunov exponent is roughly constant (e = 0.19). The average

frequency difference is zero for τ < 2.15 and for almost the width of the second

period 0 window for A = 0.001. This indicates that even though control has not

been achieved, synchronisation is still possible over a similar range in τ compared to

the other cases of higher amplitude where control was found. At the intermediate

amplitude A = 0.00075 there is control to periodic states but with a narrower window

in τ compared to A = 0.001 as to be expected. The Lyapunov exponent drops to

zero at the appropriate τ location. The average phase difference is very similar to

the other two amplitudes. The symbols in figure 7.12b represent the average number

of phase slips which occur during a controlled state which is zero for period 0, and

period 1. In between the period 0 islands there is no generalised synchronisation.
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Figure 7.13: This shows the regions of control as a function of the difference delay τ
with a fixed feedback delay T = 3 for subtractive feedback. The period is shown in (a) for
feedback amplitudes A = 0.001 (black), A = 0.00075 (dark grey), and A = 0.0005 (light
grey), and white regions represent a non periodic solution. The number of transient pulses
before control develops is shown in (b), the net phase slips accumulated during feedback (c),
where zero implies phase synchronisation, and a positive value indicates the accumulated
absolute value of the phase slips. The percentage synchronisation for τ ≤ 2 is given for the
three feedback amplitudes. The frequency difference between the intensity solution, and
the feedback signal is represented as the average phase difference during feedback in (d).
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A controlled state may have emerged from many cycles of instabilities before

finally reaching equilibrium. The number of pulses before a periodic state emerges

is shown in figure 7.13b, and again for comparison the periodic state is shown in

7.13a. The minimum number of transient pulses before control emerges is not in

the center of the control window but shifted to the left indicating that the fastest

convergence to control is not in the center of the control window. The average phase

difference is a useful coarse measure which ignores the details of the behaviour of the

relative phase. In particular, the weak synchronised state (corresponding to a zero

average phase difference) may or may not have phase jumps occurring such that the

average frequency remains zero. This information can be extracted if the magnitude

of the phase jumps are extracted by comparing each successive intensity peak time,

and feedback peak time keeping track of their relative orientation, and counting the

number of times the sign of the difference between these peak times changes. The

result is shown in figure 7.13c. At the highest amplitude there are few phase slips

during the large control window of period 1 and 0. As soon as control is extinguished

then there are many phase slips for τ < 0.76 but they average out to give a zero

average frequency as seen in figure 7.13d. As the feedback amplitude is decreased

more phase slips appear in the controlled region. The calculation of the phase slips

was applied to the regions where there is a zero average phase difference. Outside

this region the count of phase slips was set to the average phase difference since,

since these regions are not even weakly synchronised. In figure 7.13c three values

of percentage phase synchronisation for τ ≤ 2 are displayed. This is the fraction

of calculated points free from phase slips relative to the total number of points in

that region. For amplitudes 0.001, 0.00075, and 0.0005 the synchronisation ratio is

54.3%, 50.7%, and 40% respectively. This shows that a larger amplitude decreases the

number of phase slips during control, and even if control is not achieved a reasonable

amount of synchronisation can be achieved which is free from phase slips.
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Figure 7.14: Same as figure 7.12 except that the difference delay is fixed at τ = 1.5,
and the feedback delay is swept from 0.15 to 6.

The difference delay was fixed at τ = 1.5, and the effect of varying the feedback

delay T is calculated from 0.15 to 6.0 in 1000 intervals. This value of τ corresponds

to the centre of the period 0 island in figure 7.2. The periodicity, average phase

difference, and largest Lyapunov exponent are shown in figure 7.14(a), (b), and (c)

respectively at amplitudes A = 0.001 (black), A = 0.00075 (dark grey), and A =

0.0005 (light grey) respectively. In between the period 0 control islands the average

frequency difference between the intensity and the feedback signal is zero, and there

are also no phase slips in this region other than just before the second, and third

period 0 island as shown in figure 7.15c. This is unlike figure 7.13c where there is

no generalised synchronisation in between the period 0 islands. The approximate

Lyapunov exponent drops towards 0 at the appropriate location, and the number

of transient pulses for control obtained is shown in figure 7.15b which is minimum

slightly left of the centre of the island.

A simple explanation as to why there is no synchronisation in between the period 0

islands in figure 7.13c is the following. If the value of τ at the centre of the two period
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Figure 7.15: Same as figure 7.13 except that the difference delay is fixed at τ = 1.5,
and the feedback delay T ranges from 0.15 to 6.

0 islands is substituted into equation 7.7 (which assumes that period zero emerges

from a decaying oscillation which becomes more sinusoidal as the amplitude decays

due to the decreasing nonlinearity), for the first island, τ = 1.5. This corresponds

to φ = π so that sin(ωt) − sin(ωt + π) = 2 sin(ωt). For the second island τ = 4.5

which corresponds to φ = 3π so sin(ωt)− sin(ωt + π) = 2 sin(ωt) as well. However in

between the period 0 islands τ = 3 but consider φ to be only slightly larger than π

so that φ = 2π + ε. Then sin(ωt)− sin(ωt + 2π + ε) = −2 sin(π + ε/2) cos(ωt + ε/2),

which tends zero as ε → 0 resulting in a minimum correlation between the intensity

and feedback signal. This means a maximum average phase difference. At non zero

values of ε the feedback term is opposite to the expression calculated at the centre of

the control islands and hence leads to instability rather than control. It is interesting

that phase slips occurs to the left hand side of the period 0 control islands, and not

on the right hand side.

Previous experimental results show control of amplitude and phase was possible

[49] therefore can be considered the first stage of synchronisation. An experimental

example of the second stage of synchronisation, phase synchronisation, is shown in
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Figure 7.16: Subtractive feedback of the FIR laser with A approximately 0.1. No
control is achieved but the laser intensity is synchronised to the feedback signal which has
an average pulsation frequency of 817 KHz. There is only one phase slip out of 500 pulsation
peaks.

figure 7.16. The initially chaotic time series is frequency locked to the feedback signal

apart from one isolated phase slip. The intensity during feedback is not regular

but has a lower depth of modulation compared to the initially chaotic time series. A

histogram of the time difference between the peaks of the laser intensity, and feedback

signal is calculated and shown in figure 7.17. The feedback signal was relatively weak

so there was an error of approximately 0.1µs in calculating the value of the peak times.

The negative time differences of the histogram were manually checked by observing

the corresponding peaks in the time series directly, and there was found to be only

one phase slip which corresponds to the bin at −0.2µs in figure 7.17. The third stage

of synchronisation has been found where only the average frequencies of the intensity
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and feedback are the same.
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Figure 7.17: A histogram is calculated for the time difference between the peaks of the
laser intensity, and the feedback signal. The average pulsation period is 1.223µs.

Calculating coarser measures other than determining whether a state is periodic

has given information about the fastest region of convergence within a control window,

and the quality of control by measuring the number of phase slips collected during

the duration of control. The region of generalised synchronisation may be used to

control only phase as an alternative to full control.

7.2.3 Control by non–subtractive feedback

We now simplify the feedback term so that there is no subtraction and simply take

f(t) = AI(t − T ). As before we integrate the complex Lorenz equations using this

feedback term, and for different pairs of parameters T and amplitude A, construct the

time series I(t) associated with each of the parameters. The periodicity of I(t) was

calculated the same way and a map of the results as a function of delay and feedback

amplitude was constructed as shown in figure 7.18. Again the average pulsation
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period of the unperturbed system is 3.08 as indicated by the dashed line. Period 0

dominates the regions near multiples of the average pulsation period, 3.08 and 6.16,

which first appear at a feedback amplitude of 1.1 × 10−3 corresponding to about

11% modulation depth. As this amplitude increases, more different period numbers

emerge. The numerical results in figure 7.18 show that control to period 1 occurs

only on the right hand side of the large period 0 block. This segment of period 0

begins at slightly more than the average pulsation period of the unperturbed system.

This is the only region we can explore experimentally since there are delays in the

acousto–optic modulator which cannot be removed.
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Figure 7.18: Control to various periods by non-subtractive feedback as a function of
the difference delay τ and amplitude A.

As before we can use the unstable oscillator model of the form ẍ − αẋ + kx = 0

to show that it can be stabilised by applying a nonsubtractive feedback signal to give

ẍ− αẋ + kx = Ax(t− (T + ε)). Expanding this using perturbation theory and using

linear stability theory shows that this system is stabilised for α
T

< A for small ε. The

eigenvalues of the Jacobian of equation 7.3 were calculated and only non-positive

eigenvalues are plotted in figure 7.19. The period 0 and period 1 islands from figure
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7.18 appear in a similar position to the islands in figure 7.19. They demonstrate the

stabilisation of the fixed points during control to period 0 and period 1 thus allowing

an initially inaccessible region of phases space to be reached.
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Figure 7.19: Islands represent an all non positive Lyapunov spectrum of equation 7.3.
The the feedback delay is T and amplitude is A.

The measures discussed in section 7.2.2 were now applied to the non subtractive

feedback case. Here the only delay parameter is the feedback delay which is fixed to

T = 3. The average phase difference, largest Lyapunov exponent, transient number

of pulses before control emerges, and the number of phase slips were calculated as a

function of feedback amplitude. The period shown in figure 7.20a (and in figure 7.21a)

corresponds to the vertical line at T = 3 in figure 7.18, and the number of amplitude

points has been increased by an order of magnitude to increase the resolution in this

calculation. The average phase difference which is related to the average frequency

is displayed in 7.20b, and the difference is less than 4π where the number of cycles is

approximately 1000. This shows that the weakest form of generalised synchronisation

occurs for the whole amplitude range calculated for the fixed feedback delay of T = 3.

The largest Lyapunov exponent is shown in 7.20c which shows global stability is not
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Figure 7.20: The period, average phase difference, and largest Lyapunov exponent as a
function of feedback amplitude is shown in (a), (b), and (c) respectively where the feedback
delay is fixed at 3 time units.

achieved until the feedback amplitude is greater than 0.0013. The number of transient

pulses before control emerged is shown in 7.21b indicating that the fastest rate of

convergence to the periodic state is approximately in the center of the amplitude

control window. There is a period 6 orbit at A = 0.0004 which has a corresponding

low number of transient pulses, and the associated largest Lyapunov exponent also

drops in figure 7.20c. The number of phase slips was calculated and is shown in figure

7.21c. There are generally few phase slips during the controlled state other than at

A = 0.003, and A = 0.0015 which correspond to the edges of the Arnold tongue in

figure 7.18. There are some phase slips for A < 0.0011 but this amounts to only 18%

of the data points in this region giving a high synchronisation ratio of 82%.

The measures used in this analysis show that generalised synchronisation occurs

for a wide range of feedback parameters, and perfect synchronisation occurs before

control emerges for 0.0011 < A < 0.0013. The phase slips measure can show when

a dynamical state is approaching the edge of an Arnold tongue, and quantifies the
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Figure 7.21: The period, number of transient pulses before control emerges, phase slips,
and average phase difference as a function of feedback amplitude is shown in (a), (b), (c),
and (d) respectively.

quality of the synchronised state.

We now modified the model of the non subtractive feedback system by including

filtering and the results are shown in figure 7.22. Again as the low pass cut off is

decreased there is less modulation at the fundamental frequency so a greater feedback

amplitude is required to compensate. This is evident in the figure as the islands of

control move towards a higher amplitude of feedback as the cut off is decreased. The

islands also move towards a slightly smaller period and this is due to the fact that

there is a non zero average feedback signal which increases the effective “pump” λ in

the equations. These results show that limiting the bandwidth of the error signal has

the effect of raising the threshold for control and for a sufficiently large bandwidth

the results are essentially the same as the unfiltered case.
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Figure 7.22: Control to various periods by non-subtractive feedback for different high
pass cut off values ωmax. In (a), (b), (c), (d), (e), and (f) the high pass cut off frequencies
are 8, 2, 1, 0.85, 0.75, and 0.5 respectively. The low pass cutt off in each case is 0.01.
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7.3 Experimental

CO Laser2

AOM

Detector A.

Detector B.

Chaotic system

3NH  laserGr

wm

Delay
I( t -  )Τ

I(t)

Figure 7.23: Experimental schematic. Gr is a blazed grating at the pump wavelength
which doubles as a mirror for the lasing wavelength. wm is a wire mesh used as an output
coupler. The FIR intensity output is measured, delayed, and applied to the AOM

Figure 7.23 is a diagram of the experimental system used for the non subtractive

feedback experiments. The intensity of the backward wave in the ring 15NH3 laser is

measured with a Schottky barrier diode B. This signal is monitored by a spectrum

analyser and recorded by a digital storage oscilloscope. The signal I(t) is also fed into

a buffering amplifier, rescaled, amplified, then applied to the acousto-optic modulator.

The finite acoustic velocity in the AOM crystal creates a small delay (of order 1µs)

between the modulation of the RF drive signal and the action of the CO2 laser pump

beam. This time delay could be varied by approximately 20% of the fundamental

pulsation period by adjusting the AOM’s position transverse to the CO2 pump beam.

There is a second detector A which is used to monitor the pump dynamics. This signal

is simultaneously recorded with the signal measured in detector B onto a digital

storage oscilloscope.

7.4 Experimental results

The delay time T was adjusted so that this corresponded to the average pulsation

period of the laser. Control to period one was observed as shown in figure 7.24. Here
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the average feedback amplitude was 5%. Before the feedback control was turned

on (at t = 1.2ms) the laser produced Lorenz–like chaos. Initially the control signal

caused the Lorenz–like pulsations to break into transient pulses before the system

settled to period 1 pulsations, and the feedback signal was also periodic. The phase

difference between the feedback signal and the intensity output was locked only during

the controlled state as expected. The smallest feedback delay which could be achieved

in the experiment was about twice the average pulsation period of the unperturbed

system so that we could not explore τ < 6.0 in figure 7.18.
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Figure 7.24: Control to period 1 using non subtractive feedback of the FIR laser with
A approximately 0.05. The average pulsation period before and during control is 1.179µs,
and 0.9747µs respectively.

We also find that when the sign of the feedback is reversed, control can still be

achieved by adjusting the delay of the feedback (not shown since it looks the same as
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non-reversed feedback).

We also found that outside the range where control was achieved, the initially

chaotic intensity can be synchronised so that the output and feedback is fully phase

locked, and the time series is shown in figure 7.25. It appears that a different type

of chaos is produced during feedback. This resembles Lorenz–like chaos operating

closer to the chaos threshold (from above) compared to the unperturbed system due

to the lengthening of the spirals. To check for phase slips a histogram is calculated

for the time difference between the FIR intensity peaks, and the feedback signal, and

the result is shown in figure 7.26. The synchronisation has a significant lag between

the FIR intensity, and the feedback signal, and all peaks are within the average

pulsation period T = 1.068. The histogram contains two peaks where the larger peak

corresponds to the start of the spiral, and the smaller to the end of the spiral which

is preceded by approximately ten cycles with a significantly larger period than the

average. The average pulsation period decreases with increasing pump strength when

no feedback is applied, so the feedback has increased the period during the last few

cycles of the spiral despite the fact that the average energy of the pump during that

region is slightly higher than at the start of the FIR spiral.

These results show that control to period 1 can be achieved by choosing an ap-

propriate delay time. Synchronisation can be achieved which can be used to create a

modified chaos which has a higher bandwidth than the unperturbed system.

7.5 Conclusion

We numerically investigated control of Lorenz-like chaos to various periodic states,

including period 0, using two feedback control methods. The first case was subtractive

feedback of intensity including loop delay. We found that for a small amplitude control

to periods greater than three existed. At moderate feedback amplitude, control to
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Figure 7.25: Synchronisation by non subtractive feedback. Average pulsation period
before feedback, and during feedback are 1.1933µs, and 1.068µs respectively. There are no
phase slips when the non subtractive feedback is turned on.

period 0, 1, 3, 4, 5, and 6 emerged where large islands of period 0 dominate the

difference delay–feedback delay parameter space. These islands are separated by the

average pulsation period of the system. They can be shifted half a period by inverting

the feedback signal. We showed that islands of period 0 and period 1 correspond

to a non positive set of eigenvalues of the chaotic system with feedback. Further

analysis revealed that all three stages of synchronisation were present in both the

subtractive and the non subtractive case. Results were shown for two of the stages.

Perfect synchronisation was observed, where both the amplitude and phase were

controlled where there were no phase slips. Also the presence of phase synchronisation

occurred in the laser where there were no phase slips, and the amplitudes remained
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Figure 7.26: This shows the frequency of occurrence for the time difference between the
FIR intensity peaks, and the associated pump fluctuation peaks, corresponding to figure
7.25. The average pulsation period is 1.068µs. Peak detection error ranges from 0.05–0.1µs.

uncontrolled. We then examined the effect of applying an a.c. filter to the feedback

signal and varied the bandwidth before feeding it into the chaotic equations. Control

is still possible even if the high pass cut off frequency was less than the characteristic

frequency of the system. The second feedback case examined consisted of a simpler

subtraction free feedback with only a loop delay. We found control to the same

periodic cycle numbers as in the subtractive case at the same feedback amplitude,

and with the addition of period 2. The period 0 and period 1 islands dominate

the feedback delay–amplitude parameter space. These islands corresponds to the

fixed points of the feedback system containing no positive eigenvalues. Modifying

the feedback signal by applying the same a.c. filtering and finite bandwidth as in

the subtractive feedback case, we find that this has the effect of raising the threshold

amplitude for control as the bandwidth approaches the characteristic frequency of the

system.

Experimentally we were able to control a chaotic Lorenz-like laser to period 1 by

this non subtractive method but were prevented from demonstrating period 0 by time
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delays in the AOM. Synchronisation was also obtained which controls the phase of

the chaotic laser, and numerically a larger region of parameter space is available to

achieve the result. Overall, the concordance of experimental and theoretical results

confirms that control of a strongly chaotic system can be achieved by controlling

a single parameter using an error signal based on a single variable, without any

computations. Further the system can be controlled not only to periodic states but

also to the technically more useful steady state even though this region of phase space

is inaccessible in the original system.
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8
Chaotic synchronisation

The previous results in this thesis have dealt with controlling chaos to periodic be-

haviour using various modulations applied to the chaotic system. Synchronisation, as

discussed in Chapter 1 was also investigated and its relation to control was explored.

During phase synchronisation high correlations were found between the phases of the

drive and the response. Even though full control was not exerted, the system was

collapsed to a subset of the attractor so it can be thought of as a form of control. In

this final chapter the aim is to determine whether a chaotic system can be controlled

in some more general sense to applied modulation. In particular the modulation used

in this chapter is chaotic, and the question is whether the dynamics of the laser can

169
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either be simplified, or be controlled by generalised synchronisation.

Pecora and Carroll [123] showed that two identical chaotic systems ẋ1(t), and

ẋ2(t) can achieve synchronisation so that both systems evolve with the same orbit

x1(t) = x2(t), despite the fact that both systems have exponential instabilities. This

result has created extensive interest and has led to the study of coupled chaotic

systems. Different degrees of synchronisation were discovered, such as complete syn-

chonisation [123], which appears only between identical chaotic systems. Generalised

synchronisation (GS) [1] is defined as the emergence of a functional relation between

the state of the response and drive so that y(t) = F (x(t)), that is, all the variables in

system x(t) are functionally related to the variables in system y(t). Phase synchroni-

sation (PS) [11] occurs when the phases of two chaotic systems, φ1(t) and φ2 are en-

trained. As discussed in the introduction the strict definition of PS is that the phases

φ1(t) and φ2(t) with a locking ratio n : m obey the condition |nφ1(t)−mφ2(t)| = const.

This condition can be relaxed in the presence of noise [11] so that the phase difference

is bounded |nφ1(t)−mφ2(t)| < const. There are other forms of synchronisation which

include lag synchronisation [124], and measure synchronisation [125]. Each type of

synchronisation has been extensively studied, but the transition from one type to

another is not well understood. PS is usually considered a weaker form than GS since

Parlitz et al. [126] claimed that GS leads always to PS, and PS can occur between

two systems where no GS can be observed, implying that GS is stronger than PS.

There were two examples presented by Zheng et al.[127], which included the stan-

dard Lorenz system, contradict the previous claim in that GS has been found to occur

before PS between two chaotic systems with mismatched parameters. Zheng et al.

found that the threshold for phase synchronisation for the standard Lorenz equations

was significantly higher than the threshold for generalised synchronisation.

The experimental system used here can be described by the complex Lorenz equa-

tions, and an investigation is made to determine what type of synchronisation can be
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achieved, if GS implies PS for this system, and if the chaotic intensity fluctuations of

the laser can be minimised by synchronising to a chaotic pump. To observe possible

PS or GS in the laser, a variation of the auxiliary-system method [1] is used. The

original method requires an exact replica of the response system so that generalised

synchronisation occurs if the pump dynamics induces the same fluctuations in both

the response, and auxiliary systems. In other words, the response is predictably de-

pendent on the pump and is (relatively) insensitive to the initial conditions. Here,

instead of using a replica of the laser as an auxiliary system, the laser itself is used

both as the response, and as the auxiliary system. To implement this, the drive

dynamics was applied twice to the laser, where the laser was allowed to return to

its original chaotic state before the second drive dynamics was applied. The high

dissipation in the chaotic laser allowed the dynamics to return to the original chaotic

attractor relatively quickly, hence by the time the second drive dynamics was applied

to the laser, the initial conditions of the laser are sufficiently different from that at

the start of the first modulation period.

The definition of generalised synchronisation presented earlier, is that the all the

variables in the response system are functionally related to drive system y(t) =

F (x(t)) [1]. The variables x(t) and y(t) satisfy

ẋ(t) = F (x(t)) (8.1)

ẏ(t) = F (y(t)). (8.2)

Coupling can be introduced in the response system so that

ẏ(t) = F (y(t))−G · [y(t)− x(t)]. (8.3)

Then synchronised motion is bounded on the manifold y(t) = x(t). Since the response

system used here, the laser, is coupled through a parameter rather than a variable, it

is difficult to find a mathematical expression for the synchronisation manifold. The
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aim here is not to find the functional relationship between the drive and response,

but to observe whether there is a relationship, by using the auxiliary-system method.

Generalised synchronisation was found by Tang et al. [29] in a similar system using

the auxiliary method, where the laser intensity dynamics was determined by the

pump dynamics. It appears that that the phase dynamics of the intensity was also

determined by the phase dynamics of the pump, hence generalised synchronisation

occurred. I now introduce the idea of a partial generalised synchronisation. There

may be a subsystem of x(t), and y(t) which obeys generalised synchronisation, but

the remaining variables remain uncorrelated. That is, there may be an x1(t), and

y1(t), which are components of x(t), and y(t) respectively, that satisfy

y1(t) = F (x1(t)). (8.4)

In particular the variable of interest here is phase. There may be a situation where

the phases of the two chaotic systems are functionally related, but the remaining

variables may not be coupled. This would mean that the response and auxiliary

system are both split into two subsystems. One part of each subsystem will be

functionally related, and the other parts will be uncorrelated. This phenomenon

can be observed by using the auxiliary-system method. If phase dynamics of the

response system is the same as the auxiliary system, then there must be a functional

relationship between the phases of the pump and response dynamics. In other words,

there is phase synchronisation between the response and auxiliary system, which

may, or may not imply the existence of phase synchronisation between the pump

and response dynamics. This phenomenon is explored here. I will define such phase

synchronisation between the response and auxiliary system to be generalised phase

synchronisation GPS. (This is not to be confused with a very recent article that

discussed a phenomenon also called generalised phase synchronisation [128], but that

involved two non-identical driving systems.)
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The response of a chaotic laser to a chaotic modulation of the pump is now studied

to observe possible stages of generalised synchronisation. The chaotic modulation

is obtained by generating an intensity time series, from integrating the standard

Lorenz equations, and applying this to the pump dynamics through the AOM. The

experimental setup is the same as in figure 4.1 except that the arbitrary function

generator is programmed with the calculated intensity time trace to be used as the

chaotic modulation.

8.1 Chaotic modulation of the pump
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Figure 8.1: A Lorenz–like modulation is applied where ∆f = 0.3% of f0, and amplitude
is approximately 5%. Top trace is laser output, lower trace is the pump. Intensity 1, and
Intensity 2 are defined in the text and are represented as I1(t), and I2(t) respectively.

A chaotic modulation was pre-calculated using the standard Lorenz equations

and applied to the laser at a weak modulation strength of approximately 5%, and

the result is shown in figure 8.1. The average modulation frequency was 0.3% higher



174 Chaotic synchronisation

than f0, the average pulsation frequency of the FIR laser. One may notice that the

pump dynamics shown in figure 8.1 doesn’t quite look Lorenz–like. This is due to

bandwidth limitations in the AOM which is of the order of 2f0p where f0p is the

average pump pulsation frequency. The dynamics of the laser during modulation

in the upper, and lower trace are labelled I1(t), and I2(t) respectively. It is clear

that from observing these time traces that there is no generalised synchronisation

between the pump dynamics and FIR laser intensity dynamics, since I1(t) 6= I2(t).

There does appear to be a weak relation between the two intensities, so there may

be some information in their phase dynamics. This is examined by constructing an

auxiliary plot which is constructed as follows. The time difference between the laser

pulsation peaks, and the modulation peaks will be defined as dtIi(t),f(t) for the ith

intensity time trace. The auxiliary plot is a graph of dtI2(t),f(t), against dtI1(t),f(t),

and results corresponding to weak modulation are shown in figure 8.2. If a y = x
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Figure 8.2: A time auxiliary plot is calculated using the results from figure 8.1. This
shows the relationship between dtI2(t),f(t) and dtI1(t),f(t) where dtIi(t),f(t) is the time differ-
ence between the FIR and pump pulsation peaks. The pump modulation frequency offset
was ∆f = 0.3% of f0. This shows there is GPS.

type relationship is observed, then generalised synchronisation is present. From the

figure it appears that there is generalised phase synchronisation. Closer examination
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of the time traces in figure 8.1 shows that there is no phase synchronisation between

the pump dynamics, and the FIR laser dynamics since there are approximately 8

more intensity pulsation peaks than the number of modulation peaks in the same

time interval. A plot of the evolution of dtI1(t),f(t), and dtI2(t),f(t) is shown in figure

8.3, where time increases monotonically with the number of pulse peaks. Despite
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Figure 8.3: The time evolution of the time difference between the FIR laser and pump
pulsation peaks is shown using the results from 8.1. The upper plot shows the evolution
of dtI1(t),f(t), and dtI2(t),f(t) labelled “FIR1” and “FIR2”. The lower figure is the difference
FIR2-FIR1. Time increases monotonically with the number of pulse peaks. The frequency
mismatch between the pump and laser pulsation frequency at zero coupling is ∆f = 0.3%
of f0. This plot confirms the presence of GPS, and lack of PS.

there being a frequency mismatch, between the applied modulation frequency, and

the FIR pulsation frequency before modulation was applied, this mismatch is almost

the same for both the FIR traces. There is a hint of the two curves in the top plot

diverging from each other, but they seem to converge again. For weak modulation

very close to the average pulsation frequency of the laser, generalised synchronisation

of the phases seems to occurring, despite the fact that the frequencies of the pump

and laser dynamics are not locked. These results are analogous to the results of Zheng

et al. [127] where they found the threshold of generalised synchronisation to be lower

than phase synchronisation between coupled standard Lorenz systems.
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The modulation amplitude was then increased to approximately 10%, and the

frequency difference increased to 6% of f0. The result is displayed in figure 8.4 which
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Figure 8.4: A chaotic intensity chaotic intensity is applied to the laser twice, where
the dynamics is allowed to return to chaos before the second modulation is applied. The
modulation is higher than f0 so that ∆f = 6% of f0. This figure indicates the presence of
PS

shows the response of the FIR laser to a chaotic modulation which was pre-calculated

using the standard Lorenz equations. There is no obvious amplitude synchronisa-

tion between either the FIR intensity time traces with the corresponding modulation,

or between the two responses I1(t) and I2(t). Hence there is no generalised syn-

chronisation between the amplitudes of the pump and laser dynamics, although the

average frequencies of the FIR dynamics, and the corresponding pump dynamics are

the same. There are also very few phase slips other than at the start of the modula-

tion, which is seen as negative values within the first few pulse peaks in figure 8.5(a).

The time difference between the FIR and the corresponding pump dynamics is less

than the average period and approximately constant, making them phase synchro-

nised. There is an average lag between the laser and pump pulsation peaks of 0.4µs
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Figure 8.5: This shows how the time between the FIR, and pump pulsation peaks
varies with the number of pulse peaks during modulation, for the two plots in figure 8.4.
The amplitudes of I1(t) and I2(t) are uncorrelated, but there is phase synchronisation
between the FIR output, and the pump. ∆f = 6% of f0 in (a), ∆f = 9% of f0 in (b).

which implies that lag synchronisation is occurring. To determine whether there is

generalised phase synchronisation present between the phases of the laser and pump

dynamics, an auxiliary plot in time is made, i.e., dtI2(t),f(t), against dtI1(t),f(t), which is

shown in figure 8.6. The identity line is included in the figure for comparison, which
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Figure 8.6: A time auxiliary plot is generated from the results of figure 8.4. The
frequency mismatch is ∆f = 6%. This spread of points indicates that there is no GPS.

clearly shows that the data points do not follow this line, hence there is no generalised

synchronisation between the phases of the pump and laser dynamics.
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In figure 8.7 the average pump pulsation difference frequency was set to be 9%

higher than f0. Again, I1(t) and I2(t) are not correlated with each other, or the pump

dynamics. There appears to be some phase synchronisation since the phase difference

between the FIR output and the corresponding pump dynamics is bounded, as shown

in figure 8.5(b). The second FIR time trace, I2(t), shows phase slips occurs between
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Figure 8.7: A chaotic intensity is pre-calculated and is applied to the laser twice,
where the dynamics is allowed to return to chaos before the second modulation is applied.
∆f = 9% of f0. Only PS is present.

pulses 40 and 50, otherwise phase synchronisation is present. It is clear from the FIR

dynamics during modulation in figure 8.7, that the intensity dynamics has actually

fluctuated more than the initial chaotic pulsations prior to modulation. The fact that

there are now bursts of phase slips occurring, and the average lag time dtI(t),f(t) has

increased to about 0.5µs shows that lag synchronisation is being destroyed. This is not

particularly useful in terms of control, or at least minimising fluctuations. If a system

cannot be easily controlled then an attempt could be made to at least stabilise a

particular unstable aspect of chaotic system. At higher modulation amplitudes it has
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been shown that the amplitude dynamics of a chaotic laser can be correlated with the

pump dynamics under appropriate condition [29]. The modulation amplitude used

there was about 20%. Here, because the pump laser was failing, there was not enough

laser pump power to explore the dynamics in that region.

These results show that generalised phase synchronisation can occur without re-

quiring phase synchronisation when the average modulation frequency was near res-

onance, and lag synchronisation appeared without generalised phase synchronisation

when the average modulation frequency was shifted by about 5%.

8.2 Chaotic phase modulation

An alternative approach was investigated. Instead of applying a Lorenz–like chaotic

signal to the pump laser, which is chaotic in both the amplitude and phase, a constant

amplitude modulation with chaotic phase was applied. This signal was generated by

taking the Hilbert transform of a Lorenz–like chaotic intensity time series, to separate

the amplitude dynamics from the phase dynamics, as discussed in section 3.3. It is

only the phase dynamics which is used as the modulation here. It is well known

that synchronisation between identical systems can occur [123], so applying a chaotic

Lorenz–like signal to the pump dynamics is expected to work due to the similarities

between the dynamics of the pump and response, and the previous results in the last

section are consistent with this. It is worth reviewing how the dynamics of the laser

responds to a chaotic modulation of the pump when it is in the the CW or periodic

state. The results are summarised in figure 8.8. The laser was operating in the CW

regime before modulation was applied in the left hand plots in the figure. The laser

was then set to period 1 pulsations before modulation was applied which correspond

to the right hand plots in the figure. When the laser was operating in CW mode,

the dynamics of both chaotic phase modulation, and chaotic phase and amplitude
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Figure 8.8: This shows the response of the FIR laser which is operating in CW mode,
to a modulation containing a constant amplitude with chaotic phase, and chaotic amplitude
and chaotic phase respectively, in the two left plots. The same two types of modulation
signals are applied to the laser on the right hand plots, except that the laser is operating
in a stable period 1 oscillation rather than CW.

applied to the pump appeared in the laser intensity almost exactly, shown in the top

left, and bottom left plots respectively, in figure 8.8. This is to be expected since the

laser is globally stable, and is behaving like a linear amplifier. The dynamics of the

laser is still globally stable when it is operating in period 1 mode, except that the

nonlinearities have been increased so that the laser may no longer behave as a linear

amplifier. This is shown to be the case in the top right plot of figure 8.8 where a

chaotic phase modulation was applied to the laser. The behaviour is different between

the laser and pump dynamics. When Lorenz–like chaos was used to modulate the
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laser operating at period 1, the laser dynamics followed the chaotic pump well as

shown in figure 8.8.

The relationship between the amplitude of the laser intensity and the phase of the

dynamics is not a simple one, since the phase and amplitude are nonlinearly coupled

to each other in the laser system. The laser may respond in a certain way during

a particular time interval dtp(t) of the pump, which is the time difference between

adjacent pump peaks. This response may depend on the location of the state of the

system in phase space. Since only an intensity time trace is available, no complete

relationship between the response of the laser to the pump can be obtained. An

attempt is made however to show that there is a relationship which appears complex.

This is likely to involve the time difference between adjacent pump peaks, and the

corresponding difference in FIR intensity peaks. This clearly is not going to be

unique as it may (at least) depend on the instantaneous value of intensity. These

three quantities are plotted in figure 8.9. Data from the top right plot of figure 8.8 is

plotted where the points are connected with grey lines to include information about

time ordering. The two plots in the figure are just different projection angles of the

same graph. The figure indicates that there is not a simple relationship between the

three parameters. In the case of Lorenz–like chaotic modulation of the laser operating

in the periodic regime, the amplitudes of the pump and laser output appears to have a

very simple relationship as was shown in figure 8.8. The result from figure 8.9 indicates

that synchronisation between the laser dynamics and chaotic phase modulation may

be difficult to do. The chaotic laser intensity pulsations also have chaotic phase

dynamics. If this phase dynamics is similar to the chaotic phase dynamics of the

pump, then this could open up the possibility of synchronisation between the laser

output, and the modulation. It could also allow for a wider range of synchronised

states, or generalised synchronisation states to be accessed, since there is no restriction

of the nonlinear dependence of phase and amplitude dynamics which is present in a
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Figure 8.9: The ammonia laser was initially set to operate in the period 1 regime. The
instantaneous intensity and the difference between adjacent intensity pulsations is shown
as a function of the time difference between adjacent pump pulsation peaks.

chaotic (amplitude and phase) modulation.

A near resonance weak chaotic phase modulation of average difference frequency

was −0.3% of f0 (i.e. 3% lower) was applied to the chaotic laser, where the ampli-

tude was about 5%. The result is shown in figure 8.10 and indicates the average

frequency of the laser and pump dynamics are the same during the modulation pe-

riod, and that there is phase synchronisation. This is unlike the chaotic modulation

observed in figure 8.1 where the average frequencies did not lock together. To test

for generalised synchronisation, a time auxiliary plot (dtI2(t),f(t) against dtI1(t),f(t)) is

constructed and displayed in figure 8.11. There are a number of data points which

appear scattered and are far from the identity line indicating that generalised syn-

chronisation for phase is not occurring. There are a significant number of points
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Figure 8.10: Response of the laser to a weak (A = 5%) chaotic phase modulation near
resonance where ∆f = −0.3% of f0. The figure indicate that PS is present.

lying near the identity line, but it is not clear from the figure which points are due

to transient behaviour, as time ordering information is lost in the construction of the

time auxiliary plot. Figure 8.12 shows the evolution of the time difference dtI1(t),f(t))

and dtI2(t),f(t)) against the number of pulse peaks which increases monotonically with

time. This figure shows that there are 50 transient pulses, then the time differences

converge to approximately 0.1µs, and clearly shows that generalised synchronisation

is occurring between the phases of the pump and laser dynamics. So applying a

near resonance weak perturbation using chaotic modulation has generated phase and

generalised phase synchronisation.

Chaotic phase modulation was applied to the laser where the frequency was shifted

to ∆f = −3% of f0 with amplitude approximately 10%. The result is shown in

figure 8.13 which indicates a simplification of chaotic amplitude dynamics, and the

existence of a phase relationship between the pump dynamics and the FIR output.

The phase difference is examined further by plotting the time difference dtI2(t),f(t),

against dtI1(t),f(t) The result is shown in figure 8.14(a), where a 45 degree line is added
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Figure 8.11: This is a time auxiliary plot (dtI2(t),f(t) against dtI1(t),f(t)) calculated from
8.10, and an identity line is added. There is an indication of GPS since there are a significant
number of points lying near the identity line. The average pump modulation frequency is
∆f = −0.3% of f0.

to indicate the location of perfect synchronisation. The appears to be some scattered

points in the figure, so to check to see if these were due to transient behaviour, the first

14 data points were labelled which correspond to the first 14 pulsations in both the

laser and the modulation. The scattered points clearly correspond to initial transient

behaviour at the start of the modulation. Each data point has an associated error due

to 8 bit sampling and the presence of detector noise so the error ranges from 0.05–

0.1µs. The figure 8.14(a) shows that there is a strong correlation between dtI1(t),f(t),

and dtI2(t),f(t), hence the phases of I1(t) and I2(t) are also related which indicates the

presence of generalised synchronisation. The correlation is reasonable in figure 8.14

but not perfect since the data was sampled at only 8 bits, and there were errors in

estimating the pulse peaks due to the presence of noise in the detector. The phases

between the two intensity outputs are not only correlated with each other, but also

with their respective pump dynamics. This can be seen in figure 8.15(a) where the

evolution of the time differences dtI1(t),f(t) and dtI2(t),f(t), follow one another. They

are also bounded within the average pulsation period of the pump which is about
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Figure 8.12: This shows the evolution of the time differences dtI1(t),f(t)) and dtI2(t),f(t)

where the number of pulse peaks increases monotonically with time. A weak modulation
frequency ∆f = −0.3% of f0 is applied with amplitude approximately 5%. This figure
confirms the presence of GPS and PS.

1µs. This boundedness is apparent in figure 8.16, which is a histogram of dtI1(t),f(t).

The histogram also shows there are no phase slips larger than the average pulsation

period, but the sign of the relative phases between the laser intensity and the pump

pulsations is equally positive and negative. Combining this information with the time

series shows that there are positive and negative oscillations of the relative phases

between I(t) and f(t). This may be a significant contributing factor in lowering the

depth of intensity fluctuation, as compared to the initially chaotic laser dynamics.

If a functional relationship can be calculated which describes how a chaotic system

will respond to one modulation cycle of a given period, then a modulation with

appropriate phase dynamics could perhaps be used to control, or simplify a chaotic

system as was observed here as an alternative to existing control methods.

Figure 8.17 shows the response of the FIR laser to chaotic phase modulation of

average difference frequency 5% of f0. The laser is now operating in a slightly different

chaotic regime than was observed in figure 8.13. The fluctuations of the intensity are

not reduced in figure 8.17 to the extent as observed in figure 8.13, but there still
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Figure 8.13: A pre-calculated signal with constant amplitude and chaotic phase, is
applied to the laser twice. The average frequency between the FIR output, and the corre-
sponding modulation are the same. There is a high correlation between the phases of I1(t),
and I2(t) indicating the presence of GPS. ∆f = −3% of f0.

is generalised synchronisation between the phases of the two time traces I1(t), and

I2(t). This is evident in figure 8.15(b) which shows the time evolution of dtI1(t),f(t),

and dtI2(t),f(t). The maximum time difference of dtI2(t),f(t) − dtI1(t),f(t) is 0.4µs, which

is less than half the average pulsation period. So a frequency difference of 5% of f0 is

not enough to destroy phase synchronisation, but it is enough to destroy generalised

synchronisation between the phases of the pump and laser dynamics as is shown by

the time auxiliary plot in figure 8.14(b). There is a much larger spread of points as

compared with 8.14(a) which corresponds to a modulation difference frequency −3%

of f0. Hence there is no generalised synchronisation at a frequency difference of 5%,

but there is synchronisation. It was found that increasing the frequency difference to

6% of f0 was enough to completely destroy phase synchronisation.

To obtain generalised synchronisation it is usually considered that the average
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Figure 8.14: This shows how the time between the FIR, and pump peak pulsations

varies with the number of pulse peaks during modulation. The plots (a) and (b) correspond
to figures 8.13 and figure 8.17. The amplitude between I1(t) and I2(t) are uncorrelated,
but there is phase synchronisation between the FIR output, and the pump. ∆f = −3% of
f0 in (a), ∆f = 5% of f0 in (b).
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Figure 8.15: The evolution of the phase difference between I1(t) and f(t), and the
phase difference between I2(t) and f(t) is plotted, and shows a relatively high correlation.
The figure implies there is PS, and confirms GPS, where ∆f = −3% of f0 for (a) and the
figure shows there is PS where ∆f = 5% of f0 for (b).

pump modulation frequency should be almost equal to the average pulsation fre-

quency of the system [126] Increasing the amplitude of the modulation allows gener-

alised synchronisation to occur between two quantities i.e. the existence of a func-

tional relationship. An investigation is now made to determine whether it is possible
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Figure 8.16: This is a histogram of the time difference between the peaks of I1(t) and
the pump f(t). This figure shows that the time differences between I1(t) and f(t) are
bounded. ∆f = −3% of f0. This confirms the presence of PS.

to have generalised synchronisation occurring where the average frequencies of the

FIR output and the pump dynamics are far from equal. Generalised synchronisation

was found to occur between the phases of the pump and laser dynamics in figure 8.10

where there was a small frequency mismatch between the pump and laser pulsation

frequency. It is found here that generalised synchronisation is possible even though

the average pump modulation frequency is far from the average FIR pulsation fre-

quency as shown in figure 8.18. The average modulation frequency is slightly larger

than 1
3
f0, (38% of f0). From this time trace it is clear that generalised synchronisation

has occurred between the amplitudes of I1(t)), and I2(t). This is explicitly shown in

figure 8.19(a) which is a plot of the peak pulsation intensities of I2(t), against I1(t).

Equality of the two intensity dynamics is represented as the function I1(t) = I2(t),

and this is clearly visible in the figure hence generalised synchronisation is occurring

between the pump and laser intensity dynamics.

It is now interesting to investigate the dynamics of the phase difference between

the FIR output and the pump dynamics, since the average modulation frequencies

between the two are different by almost a factor of three. A time auxiliary plot
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Figure 8.17: Chaotic phase modulation was applied to the FIR laser where the average
frequencies between the FIR output was shifted so that ∆f = 5% of f0. The figure indicates
the presence of PS.

is shown in figure 8.19(b) where the data again follows an identity plot. This shows

that generalised synchronisation was also occurring between the modulation and laser

phase dynamics. Another way to analyse the phases of the dynamics is to take the

time for each third FIR pulsation peak and subtract it from each successive pump

peak, and the result is shown in figure 8.20 for both I1(t), and I2(t). This time

difference grows for both the intensities since the modulation frequency is not exactly

at 1
3
f0. The appearance of a strong relationship between dtI1(t),f(t) and dtI2(t),f(t),

and the number of pulsation peaks (which is related to time) is in agreement with

the time auxiliary plot 8.19(b). One final way to analyse the phase dynamics is

to apply the analytic signal approach using the Hilbert transform as discussed in

section 3.3. This procedure can be performed on the intensity time traces so that the

amplitude and phase fluctuations are separated. The evolution of the phases of the

FIR intensity (I1(t)) and pump pulsations, are shown in figure 8.21(a). The phases

of both quantities have been unwrapped, and the phase calculated for the pump



190 Chaotic synchronisation

-0.1 -0.05 0 0.05 0.1 0.15

-0.5

0

0.5

Time (ms)

In
te

ns
ity

 1
 (

A
rb

. U
ni

ts
)

0.2 0.25 0.3 0.35 0.4 0.45 0.5

-0.5

0

0.5

Time (ms)

In
te

ns
ity

 2
 (

A
rb

. U
ni

ts
)

Figure 8.18: A chaotic modulation is applied the laser where ∆f = 38% of f0. The
equal laser responses shows there is GS.

was multiplied by three for display convenience, since the pulsation frequency of the

pump is almost 1
3
f0. The phase difference φI(t) − 3φpump is shown for I1(t) (black

line), and I2(t) (grey line) in figure 8.21(b). This gives more detailed information

about the phases than figure 8.20 since the whole intensity waveform was used to

calculated the phase using the Hilbert transform, rather than just using the pulse

peak times. These results show that generalised synchronisation is possible without

phase synchronisation which is in agreement with Zheng et al. [127]. Not only

can generalised synchronisation be obtained without phase synchronisation, but the
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Figure 8.19: An auxiliary plot is generated from figure 8.18 where ∆f = 38% of f0.
(a) is an auxiliary plot in I, (b) is an auxiliary plot in dt. Both plots confirm generalised
synchronisation is occurring, as defined by [1]

frequency mismatch between the pump and laser intensity pulsation frequencies has

shown to be large.

The arbitrary function generator available had a limited number of points so

that only one value of modulation amplitude could be explored at a time. If the

modulation could be varied in small discrete stages, then observing the evolution of

the phase corresponding to each modulation amplitude could provide an insight to

how this type of behaviour can emerge, and how phase synchronisation, generalised

phase synchronisation, and generalised synchronisation are related.

All the experimental results are summarised on the diagram in figure 8.22.

8.3 Conclusion

Generalised synchronisation of intensity, and phase, was investigated between a chaotic

laser and two types of pump dynamics. A Lorenz–like modulation was considered

first, which has chaotic amplitude and chaotic phase dynamics which resembles a

second chaotic system. Lag synchronisation was observed between the laser, and
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Figure 8.20: The evolution of the time difference between the peaks of the intensity
and the corresponding pump is shown for the two intensities I1(t), and I2(t). The phase of
each intensity is correlated with the corresponding pump, and with each other. ∆f = 38%
of f0.

the Lorenz–like pump dynamics for a moderate modulation amplitude which existed

up to a frequency mismatch of 9% between the laser and the modulation with zero

coupling. No generalised synchronisation was found during the lag synchronisation

regime. When a weaker modulation was applied very close to resonance, generalised

phase synchronisation was found between the pump and laser dynamics even though

there was a frequency mismatch greater than at zero coupling. Generalised phase

synchronisation had a lower threshold than phase synchronisation which is analogous

with Zheng et al. [127].

Another modulation signal was used which had a constant amplitude and chaotic

phase dynamics. At near resonance with low modulation amplitude, generalised phase

synchronisation, and phase synchronisation was observed between the pump and laser

dynamics. Comparing this result with Lorenz–like modulation at near resonance

indicates that chaotic phase modulation can have a greater impact on the dynamics

of a chaotic system than full Lorenz–like modulation.

When the modulation amplitude was increased and the average frequency was
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Figure 8.21: This shows the evolution of the phases between the intensities I1(t), and
I2(t) with their corresponding pumps f(t). This was calculated using the Hilbert transform
on the time series of figure 8.18. ∆f = 38% of f0.

shifted away from resonance by about 3% generalised synchronisation persisted which

dissolved at a frequency difference of 5%. At both these frequencies, phase synchroni-

sation remained until the difference was 6%. Generalised synchronisation was investi-

gated where the modulation frequency was far from resonance. A striking result was

observed where both phase and amplitude generalised synchronisation was found, de-

spite a frequency mismatch between the pump and laser pulsation frequency at zero

coupling.

These results shown that the laser dynamics could be decomposed into two sub-

systems where the dynamics of one system was functionally related to the pump

dynamics, while the other appeared uncorrelated. Generalised phases synchronisa-

tion could occur without requiring phase synchronisation to occur between the pump

and laser dynamics, therefore phase synchronisation is not a necessary condition for

generalised phase synchronisation.
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Figure 8.22: Summary of results. Labels are: Synchronisation S, Generalised synchro-
nisation GS, Phase synchronisation PS, and Generalised phase synchronisation GPS. The
figure number associated with the appropriate time series is shown at the start of the arrows.
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Conclusion

Two different chaos control methods were studied. A parametric perturbation method

was considered first, that works on the principle that control to a periodic state

is possible if an appropriate sinusoidal modulation is applied to a chaotic system.

Control well above the chaos threshold had never been observed in the ammonia laser,

contrary to expectation. Careful experimental and numerical studies were presented

here which showed that such control is possible with modulation at a frequency near

the average chaotic pulsation frequency. These results confirmed that not only is

control possible in this system, but there is a wide choice of stabilised orbits which

lie in a very narrow parameter region. Although difficult to implement, this method

195
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did allow access to a number of orbits once one is found.

The second method of control investigated here was based on the delayed feedback

method introduced by Pyragas. An error signal was generated from the difference

between a signal, and its value delayed in time, and this difference was fed back to

modulate a system parameter. This method is based on the idea that a trajectory

evolving on the attractor visits the desired orbit with a significant probability, and

can become stabilised when sufficiently close to the orbit.

Control to various periodic states, and the steady state, had previously been

observed in the ammonia laser, and was confirmed by the author. Detailed numerical

studies supported and extended the experimental results, and were used to explore

the effects of varying the feedback delay over several pulse periods. An additional

loop delay was introduced to allow for the fact that the difference signal took some

time to be fed back into the system in the ammonia laser. Control was achieved for

delays of several pulsation periods. Perturbative control to steady state using the

Pyragas method should not be possible in the Lorenz system since the unstable fixed

point and nearby regions in phase space are never visited by a chaotic trajectory. The

unexpected result of control to steady state had occurred since the feedback amplitude

was not a small perturbation and thus changed the nature of the dynamical system.

This was also manifested in the fact that the error signal did not go to zero in the

controlled periodic states as expected by the Pyragas method.

The question of difficulty of control was also addressed, and it was shown that

in both state independent and feedback methods the controlled periodic states were

embedded in a relatively large area of parameter space where synchronisation occured.

In the case of feedback methods ‘synchronisation’ refers to the self–synchronisation of

the system with its own behaviour at an earlier time. Synchronisation can be thought

of as a weaker form of control in the sense that only the phase of the dynamics is

entrained to the driving signal, and the amplitude is typically uncorrelated. This
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extra freedom allows the synchronised region to span a larger parameter space. Since

control lied within this region then locating the synchronised region could be used to

find the control region, and provide information about the stability of the controlled

state.

A simpler feedback method known as non subtractive feedback was also investi-

gated where the error signal was generated without the subtraction of an earlier signal.

Control to steady state was found, in which case the feedback signal vanished. At

other controlled periodic states the feedback signal was periodic, so that once again

the feedback system can be thought of as part of a new more complex dynamical

system which can have simpler dynamics. Finally the effect of detector bandwidth on

both feedback methods was investigated numerically, and it was found that control

continues to work even when the bandwidth of the feedback was somewhat less than

the characteristic frequency of the chaotic system.

A more general form of control known as chaotic synchronisation was investigated.

Instead of coupling two chaotic systems through their variables, as has been a strong

emphasis in the synchronisation literature, coupling was performed here through a

system parameter. These results showed that generalised phase synchronisation did

not require phase synchronisation to occur. Generalised synchronisation could occur

despite a very large frequency mismatch between the two systems at zero coupling.

All these results showed that in a real autonomous chaotic system, a number

of periodic states could be controlled by sinusoidal modulation or by feedback to a

single parameter, without the necessity for a detailed model or real time computation.

Slight modification of the dynamical system by incorporation of a feedback loop

could change the overall dynamics to produce periodic states that were similar to

the associated unstable periodic orbits in the unmodified system. The inclusion of

the filter in the feedback loop forced the feedback signal to have very few harmonics

so that the resultant signal was near sinusoidal. Therefore the chaotic system with
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delayed feedback is rather similar to the chaotic system with periodic modulation

during the controlled state.

A more significant result is that control to the unstable fixed point was possible

even though regions in the vicinity of the steady state were not part of the the

original attractor, so that the feedback therefore allowed a creation of a new dynamical

state. The feedback methods used here gave a wider choice of possible dynamics than

perturbative feedback methods.

9.1 Future work

Despite the large number of publication on control of chaos, only a few control meth-

ods such as the OGY method are well understood. Perturbation theory can be used

successfully in estimating appropriate parameters to implement control for situations

where the control signal vanishes. These approximations are no longer valid for non

vanishing control signal. Since analytical estimates of control parameters are not

possible, the suitable control parameters used here were obtained by trial and error

within the technical limits in the experiment. Once appropriate numbers were found

then these were used in the numerical model. These simulations showed islands of

control in parameter space which are predicted using perturbation theory only for

period 0. However, a rich structure of islands of control to other periods were found

that wasn’t predicted using perturbation theory. Further work is required to develop

techniques to estimate appropriate control parameters where the feedback signal does

not vanish, and to provide an explanation for the location and structure of the is-

lands of control to periodic states. This may lead to a clearer understanding of how

control is achieved, which may involve following the structure of the attractor during

the process of control. We need answers to questions such as: given an arbitrary

system what control method is the most efficient for that particular system ? At
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the moment this is generally done by trying various methods as was done here. It is

hoped, the results in this thesis will stimulate more research into control using non

vanishing feedback signals with moderate perturbation, and these results may lead to

new insights in the area of chaotic encryption, and in reducing chaotically fluctuating

to a technically useful steady state.
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A
The OGY method

This method, first proposed by Ott, Grebogi, and Yorke (OGY) [34] in 1990 aims to

efficiently convert chaotic motion to regular periodic motion by using only tiny per-

turbations of the system parameters. It makes use of the property of a chaotic system

that all the unstable periodic orbits are accessed within a finite time since the system

is ergodic, which also means that there will be trajectories x(n) in phase space that

visit a neighbourhood of a particular unstable periodic orbit with significant regular-

ity. In this neighbourhood, the stable and unstable manifold of the unstable periodic

orbit are approximately linear and can be approximated by es and eu respectively

as shown in figure A.1. When x(n) wanders into this neighbourhood a perturbation

201
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δp is applied to one of the accessible system parameters p which shifts the location

of the unstable periodic orbit xupo to x∗upo, and the previous manifolds to ẽs and ẽu

respectively. The state x(n) follows the directions of the new manifolds to the new

location x(n + 1).

X

X

n

n+1 x

x

UPO

UPO*

e

e

e

es

u

u

s
~

~

x

x

n

n+1

Figure A.1: Geometric interpretation of the OGY method. A return map is used so that
the unstable periodic orbit xupo appears as a fixed point. This has an associated stable es

and unstable eu manifold. A perturbation is applied when x(n) is sufficiently close to xupo,
which shifts the location of the unstable periodic orbit x∗upo and its associated manifolds ẽs

and ẽu. This causes the point x(n) to move to x(n + 1) due to the attracting and repelling
properties of the new manifolds. The perturbation is turned off once the new point lies on
the stable manifold prior to perturbation. The point x(n + 1) will now move towards xupo

along es. This process is repeated at each iteration to prevent the unstable manifold eu

from taking the state away from the desired unstable periodic orbit.

The control perturbation is turned off so that the new unstable periodic orbit x∗upo

returns to the previous position xupo as do the manifolds. The control perturbation

δp is chosen so that the new iterate x(n + 1) lies on the stable manifold es and
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will move in the direction of the desired orbit xupo. This process must be repeated

at every iteration since the unstable manifold will eventually repel x(n) away from

the desired orbit. This procedure exploits the linearity of the stable manifold in

the neighbourhood of the unstable periodic orbit, and the exponential sensitivity

thus allowing the perturbation to be small. The directions of the manifolds and the

location of the unstable periodic orbit is required to be known, and can in principle

be estimated from the past data.

The advantage of this method is that control is perturbative and any unstable

periodic orbit can be stabilised. No global model is required as the relevant dynamics

can be reconstructed from a time series [76, 129]. This method has been successfully

implemented in experiments on a forced magnetoelastic ribbon which showed control

to various periodic states [35]. This however poses difficulties since the state must be

located at a particular point in phase space. A large amount of data is required so that

an accurate estimate of the manifolds can be obtained, but it is difficult to calculate

from reconstructed data since the reconstruction is not perfect, and computation

time is a major issue for relatively fast oscillating systems like the laser studied in

the Author’s work. A Poincare section is required so that the desired orbit crosses

this surface, and the value/s of the system on this surface are used in the feedback

algorithm. Although choosing a Poincare section is not difficult in a non autonomous

system as there is a well defined phase based on the driving source, however for

autonomous systems the phase is not well defined, so the choice is not obvious. For

these reasons the author has sought alternative control schemes.
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B
Deriving the Lorenz–Haken equation with

arbitrary pump modulation

Starting with the Maxwell–Bloch equations;

Ė = −κ(1 + iδ)E − iωc

2ε0
P (B.1)

Ṗ = −γ⊥(1− iδ)P − iU2

~
ED

Ḋ = −γ‖(D −D0)−
1

2i~
(E?P − P ?E),
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modulation

we make the transformation;

E =
−~

iν12

√
γ‖γ⊥E ′ (B.2)

P = −2
√

γ‖γ⊥
ε0~κ

ωcν12

P ′ (B.3)

D =
2ε0~κγ⊥

ωcU2
D′ (B.4)

Where U2 = ν12ν
?
12, and δ = ω−ωc

κ
. The lasing frequency is pulled to ω, and ωc is the

empty cavity frequency. This gives;

Ė ′ = −κ((1 + iδ)E ′ − P ′) (B.5)

Ṗ ′ = −γ⊥(1− iδ)P ′ + γ⊥E ′D′ (B.6)

Ḋ′ = −γ‖(D
′ −D0

ωcU
2

2ε0~κγ⊥
)− γ‖(E

′?P ′ + P ′?E ′) (B.7)

Now the steady state population inversion becomes modulated so D0 = Dss(1+ f(t))

and substituting λ as

λ =
ωcU

2

2ε0~κγ⊥
Dss (B.8)

Thus the equation B.7 becomes

Ḋ′ = −γ‖(D
′ − λ(1 + f(t)))− γ‖(E

′?P ′ + P ′?E ′) (B.9)

(B.10)

Finally transforming only the static part of the pump

E ′ = E (B.11)

P ′ = λP

D′ = λD
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and rescaling time t = τ = κt transforms the decay rates and the result is equation

Ė = −((1 + iδ)E − λP ) (B.12)

Ṗ = −1/σ((1− iδ)P − ED)

Ḋ = β/σ(1−D + f(t)− 1/2(E?P + P ?E)),

where

σ = κ/γ⊥ β = γ‖/γ⊥

and these equations appear in Chapter 6 as equation 7.3
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