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Transforming chaos to periodic oscillations
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We demonstrate that the dynamics of an autonomous chaotic class C laser can be controlled to a periodic
state via external modulation of the pump. In the absence of modulation, above the chaos threshold, the laser
exhibits Lorenz-like chaotic pulsations. The average amplitude and frequency of these pulsations depend on the
pump power. We find that there exist parameter windows where modulation of the pump power extinguishes
the chaos in favor of simpler periodic behavior. Moreover we find a number of locking ratios between the
pump and laser output follow the Farey sequence.
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[. INTRODUCTION sists of applying a modulation to one of the parameters of the

In nonlinear systems with two degrees of freedom onelynamical system. This changes the original system, but for
parameter must be modulated in order to generate a thir@ sufficiently small modulation, the unstable periodic orbits
degree of freedom, thus allowing chaos to emerge. Man'€ similar to the corresponding orbits in the unmodulated
laser chaos experiments are performed this ftdyAlterna- system. Stabilizing one of thgse orbits should give control as
tively if a system already has three degrees of freedom, theRredicted by theoretical studigs,9,15,18. _
chaos can emergevithout modulation. The Lorenz-like To date, only class A and B lasers have been used in
chaos in the ammonia laser is an example of such auton@Pptical studies of control of chaos by modulation. For ex-

mous chao$?2]. ample, a nonautonomous class B laser was controlled by a

Dynamics of such chaotic systems have been studied bofi@!l modulation of the losses to a periodic s{dté]. Sub-
theoretically[3—5] and experimentally6,7]. However, rela- harmonics of the pump were observed and three different

tively little work has been done in investigating the proper_Iocking ratios were found. Control of a cl_ass B multimode
ties of an autonomous chaotic system where one of the p&Utonomous laser was found by modulating the pufi§.

rameters is made time dependg8it This can either increase In all cases the controlled output cpntam(_ad higher harmonics
the complexity of the dynamics or simplify it. One mecha- of the pump. A large range of locking ratios were found and

nism for controlling autonomous chaos is to periodicallyS"20s was almost suppressed to a dc level when the modu-

cross the chaos threshold by varying the pump pdiBef]. lation frequency was above 25% of the fundamental pulsa-

However, this mechanism obviously cannot be used to contion frequency. It is interesting that a larger modulation of

trol chaos if the system is permanently above the chaotid?® PUMP was required to control the dynamics compared to
threshold. It is well known that a chaotic attractor is Woundrm)dm""t'On of the loss in the case of a multimode solid state

around a set of unstable periodic orbig§. This has led to 'aSerl19]- _ , ,
the development of algorithms such as the Ott-Grebogi- Here, we use a chaotic class C laser, which has previously

Yorke (OGY) method[10] to select these orbits and control Peen shown to be well described by the complex Lorenz
them. This requires detailed knowledge of the dynamicaﬁquatlons{zo]. Previous numerical studies of these equations

system, for example, an accurate estimate of the directions diclude modulation of the inversion across the bifurcation
the unstable and stable manifolds, in order to estimate hoWiNt[21], replacing the Rayleigh parameter with a time de-
much change should be applied to a parameter in order {gendent terni15], and modulation of the inversion above the

gain control. Thus the OGY algorithm is suitable for slow Pifurcation point for the real Lorenz equatiofsorresponds

oscillating systems, but the required computation rapidly bel® @ nondetuned lasef3]. Elsewhere we extend the latter

comes intractable for fast oscillating systems. model to include detuning22]. It is this system which we
Other feedback methods require no knowledge of the sysExplore here. o , .
tem Examples include occasional proportional feedback in a Ve find that there are many regions in modulation ampli-
Nd:YAG pumped KTP crystal forming a multimode autono- tude and modulatlon frequ_ency parameter space, that cause
mous lasef11], and in a diode pumped Nd-doped silica fibre the dynamics of the chaotic laser to frequency lock to the
multimode autonomous lasé2]. Control by subtractive ©€Xternal periodic modulation, which form Amold tongues
feedback has been shown in a nonautonomous @€er and the locking ratio is rational. We show that a chaotic laser

[13] and an autonomous NHaser[14]. These systems re- can be contrplled to period when modulated at period,
quirea priori knowledge of the average period of the chaotic2d the fractionp/q belong to the Farey sequence as was

pulsations, and a subtraction of the measured time serid@und in anonchaotic lasg23] and in a bimode laser with a
from its value at an earlier time. saturable absorbdR4]. We find that these Arnold tongues

Since these methods may not always be appropriate, w&'€ VEry narrow.

experimentally explore an alternative approach, which con- Il EXPERIMENT

Our system consists dPNHj ring laser which is optically
*Electronic address: kociuba@physics.ug.edu.au pumped by a'3CQ, laser through a vibrational transition at
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FIG. 1. Experimental schematic: GQaser is the pump, NH 0.7 §
ring laser is the chaotic system, Gr is a blazed grating at the pump
wavelength (10.78um) which doubles as a mirror for the lasing
wavelength (158 m), wm is a wire mesh used as an output cou- 05 ‘ , , , , §
pler, AOM is an acousto-optic modulator, detector A monitors the -6 -4 2 4 2 4
pump dynamics, and detector B monitors the FIR dynamics. Time (10 s)

FIG. 2. Control to period 1. The lower trace is a schematic of
10.78 um. The lasing occurs through a rotational transitionthe dynamics applied to the pump. The blocks of height 20% rep-
at a wavelength 0.153 mm. We use a semiconfocal ring cawesent the period where pump modulation is applige modula-
ity as shown in Fig. 1, to achieve unidirectional lasing, wheretion depth is shown on the right hagdaxis). The upper trace is the
the backward traveling wave is chosen in preference to thgeakoutput intensity of the pumped las@ntensity is shown on the
forward wave because the ac. Stark effect splits the gain lingft hand axig. As this is peak intensity, the flat regions represent
in the forward direction25]. period 1 pulsations.

Dynamics are optionally imposed on the pump by passing o . )

the laser beam though an acousto-optic modul&A@®M). pulse _helght is displayed, so that a horizontal line represents
The signal applied to the AOM is programmed using anPeriodic pulses anql each spike represents a Lor_enz “spiral”
arbitrary function generator. We monitor the C@tensity ~ Of Several successive pulses of increasing amplitude.
via the first diffracted order from the AOM. This is detected  When modulation is applied, it is clear that the dynamics
by a Hg.Cd, , Te photodetector A. The dynamics of the far of.the FIR Iaser has been transfqrmed and is no longer cha-
infrared laser are observed by detecting the intensity of th@tic- Figure 3a) is an expanded view of one of the segments

output field with a fast Schottky barrier diode detector B, sed©M Fig. 2. This shows that the Lorenz-like chaotic pulsa-
Fig. 1. The signals from both detectors are recorded simullions exist before modulation is applied to the system, and a

taneously onto a digital storage oscilloscope. periqd one signal .develops as modulation is applied. The
Fourier transform is calculated for the unmodulated laser

output, and modulated output from Figa and shown as

ll. EXPERIMENTAL RESULTS the upper trace, and lower trace, respectively, of Fi).3
The initially chaotic system possesses a broad spectrum
(gray), with three broadened harmonics of the fundamental
pulsation frequency. This collapses to a set of sharp well

In general, modulation of the pump leads to no noticeablelefined harmonics with the fundamental located at the posi-
simplification in the dynamics. However, we have been ablaion of the fundamental pump modulation frequency. This
to identify a number of cases where, for specific ranges ohows the transformation from chaos to period 1 pulsations.
modulation frequency and amplitude, periodic pulsations re- |n Fig. 4 we examine these spectra more closely. Figure
place the chaotic spiking. Four cases are presented. Becaus@) is the spectrum of the FIR laser under modulation and
the parameter ranges where periodic behavior can be olfFig. 4(b) that of the pump. Higher harmonics of the funda-
served are narrow, special care had to be taken to overcomgental are present even though there are only three evident
the effects of unavoidable drifts during the experiment. Onlyharmonics associated with the pump. This may be that the
then was it possible to distinguish consistent and reprodudaser is amplifying the pump harmonics, or that output har-
ible patterns of behavior. monics are generated from a single pump modulation fre-

We apply a modulation to the pump of the forhft) quency, of some combination of both.
=A[ 1+ sin(wt)] rather thanf(t) =A sin(wt), so that we can To analyze the effect of pump modulation on the FIR
be sure modulation occurs above the chaos threshold. Thiaser, we take the ratio of the spectrum during modulation, to
wave form is programmed into an arbitrary function generathe spectrum without, as shown in Figch A dashed line is
tor which in turn modulates the AOM. The frequency wasadded at the O dB level to differentiate attenuation and en-
chosen to be near the average pulsation frequency of the frégancement. It is clear that most frequencies have been at-
running chaosfy. The lower trace of Fig. 2 indicates the tenuated whilst only the harmonics of the pump modulation
periods where pump modulation was applied. The modulafrequency have been enhanced.
tion depth was 20% as shown on the right hgrakis scale. As the laser is initially chaotic before control was applied,
The upper trace shows the response of the FIR laser to thige expect that the dynamics of the system does not imme-
modulation. In order to display a time period much longerdiately change from a chaotic state to a periodic state at the
than the time between individual pulses, only the maximumturn-on of the modulation, but does so after a few cycles of

A. Harmonic pump modulation, harmonic
generation—control to period 1
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FIG. 3. Expanded view from -0.23 ms to 0 ms of Fig(&. Top trace is the intensity of the NHaser output, lower trace is the pump
intensity (the modulation depth between 0.25 ms and 0.3 ms is)2($6Frequency spectra of the léfight) hand side of the NElintensity
trace from(a) are shown as the grayplack trace. Note that the broad spectrum of the unmodulated case is transformed into a harmonic
spectrum in the modulated case. The arrow indicates the position of the fundamental pump modulation frequency.

irregular behavior. This is most clearly seen by performing Experimentally, control to period 1 could be observed
the following experiment. The laser was modulatedato ~ over a narrow range of pump modulation frequency and am-
give period 1, then allowed to return to its chaotic stditg  plitude. Changing any one of the parameters by 1% is
removing the modulation finally the same modulation was enough to destroy control. Clearly, experimental drift issues
applied to the laser thus resulting in period 1. Figure 5 thisvould need to be addressed before undertaking a full map of
sequence of events, allows the laser to develop different inithe parameter space, but these results are enough to show
tial conditions between the first and second modulation pethat while control is possible, it is not easy to achieve.

riod of control. Figure 6 shows the intensity outputs from

both periods. The solid line is the response to the first modu- B. Harmonic pump modulation, subharmonic

lation, while the dashed line is the response to the second. generation—control to period 3

Both these lines are different between time zero and 0.014 We also found that it is possible to control states to higher
ms, since at this interval both intensities are not phased P 9

locked to the pump modulation. After 0.014 ms, both thesémeger periodge.g., pattern repeats every three pulseig-

intensities are phased locked, hence the two curves in the € 7is S|m|lar. to Fig. &) except nc;w we have lowered the
graph of Fig. 6 collapse onto the phase locked curve. pump modulation frequency by 16%. It shows that the laser
takes many cycles before it settles down to period 3 pulsa-

@) tions, and that the period 3 behavior is not perfectly regular.
We believe this is due to the sensitive dependence on modu-
lation frequency relative to the natural pulsation frequency of
the ammonia laser which in turn depends on the frequency
and power of the pump laser, both which are subject to jitter
and drift. In the frequency domain it is clear that the dynam-
ics of the laser has been simplified, as is evident in Fig. 8.
The frequency spectrum for the FIR laser output is shown on
the upper trace, and the pump spectrum on the lower trace.
Note that we are pumping near the fundamental frequency
fo, and we generate rational subharmonicg df and$ f,
indicated byf, andf, in Fig. 8, which are not present in the
pump. Higher harmonics such &g, and3 f, are present as
well as integer multiples of all rational harmonics.

We found that the laser output contains harmonics of the
pump when the modulation frequency was chosen to be
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FIG. 4. Fourier spectra fofa) the pump modulated FIR laser a b . d
output, (b) the pump modulation, an¢c) the ratio of the pump
modulated FIR laser output to the unmodulated laser output. Tri- FIG. 5. Schematic of modulation applied to the pump. The
angles indicate the position of the integer harmonics. the dashepump is modulated &fty, the fundamental pulsation frequency, for
line indicates the position of zero gain, note that only the harmonic4.00 cycles between a and b, followed by a period of no modulation
of the pump are amplified, all other frequencies are suppressed. between b and c, followed by 100 cyclesfgtbetween ¢ and d.
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FIG. 8. Control to period 3. Lower trace is the frequency spectra
. : . S of the pump where the modulation frequency is indicated by a dot.
modulation of the pump to give period 1. The solid line is the The upper trace is the frequency of the FIR laser during modulation.

response to modulation dt, while the dashed line also is a re- . .
. . fy.f5,f1 indicate the fundamental pulsation frequerfgy and the
sponse to the same modulation, but applied after the system wa§’ . 1 .
allowed to return to its chaotic state. Therefore the difference befatlon"jll subharmonlcéfo, andsf, respectively. Note the presence

tween the two traces is the initial conditions. of higher harmonics of these frequencies.

FIG. 6. Two intensity outputs of the laser corresponding to

unmodulated spectra, shows that the enhancementf of

(located at 0.4 MHyis slightly larger than af,. However,

the time trace in Fig. 9 clearly shows the main pulsation

frequency to be af,, not at3f,. This is evident in the FIR

output spectrum in Fig. 16) since the signal at is larger

than at3f, due to the fact that the baseline fatis higher

than at3f,. This suggests that the mechanism for control
Consider the chaotic spectrum of Fig. 3. The results of theould be that the unstable periodic orbit at, has been

last two sections were obtained by modulating at a frequencgtabilized, or that the second harmonic of the pump, is sta-

near to the first peak of the chaotic spectriynif we instead  bilizing the unstable periodic orbity of the FIR laser. The

modulate at half this frequency, Fig. 9 shows the resultpresence of these two harmonics in the pump dynamics

There is transient behavior for approximately 20 cycles bemakes this distinction ambiguous.

fore the FIR laser output is controlled to period If gt This

is clearer in the associated frequency spectrum shown in D. Subharmonic pump modulation subharmonic

Figs. 1Ga) and 1@b). As previously, there are sharp well generation-control to other periods

defined harmonic peaks in the FIR laser output spectrum

which shows periodic behavior. However, now the main pul-_. We now look for locking ratios other than 1/1 with the

sation frequency of the laser is at twice the pump modulatio"™ of stabilising any other un;table perio_dic orbits that may
frequency. Figure 1@), the ratio of the modulated to the exist. We do this by systematically stepping through modu-
' ' lation frequency with a fixed amplitude to search for periodic

solutions. Figure 11 is a graphical description of this experi-

about 10% higher thaf,. However, if we bring the modu-
lation frequency to within a few percent 6§, we find that
subharmonics emerge in addition to the pump harmonics.

C. Subharmonic pump modulation, subharmonic
generation—control to period 1
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FIG. 7. Control to period 3 after many pulses of instability. FIG. 9. Control to period 1 from an initially chaotic state. Upper
Same conditions as Fig(&® except that the modulation frequency trace is the FIR laser intensity output, lower trace is the modulation
is lowered by 16%. applied to the pump a%fo.
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irregular pulses after the application of modulation.

outFIG' io' hFouner spectralfo(ra) the pumﬁ moo_lulatfethlR laser e modulation sequence remained above the chaos threshold
put, (b) the pump modulation anc) the ratio of the pump i gnite of any parameter drift. The upper trace shows the
modulated FIR laser output to the unmodulated laser output. Trig o' qer response to these events. For display purposes only
a_tngl_es _|nd|cate the pqsmon of the ]nteger harmonics. the Qash e maximum pulse height is shown.
line |nd|cat§s the position of zero gain, note that the harmonl_cs and The first modulation applied in the sequence is labeled
subharmonics of the pump are amplified, all other frequencies are100 ” The dynamics shown in the upper trace is no longer
suppressed. Lorenz-like but more complicatedThis is not apparent in
Fig. 11 because of aliasing in the printinds the frequency
ment. The lower trace shows the variations in pump powefs reduced99) the dynamics is still not simplified, however,
imposed by the AOM. We fix the amplitude and reduce thethere is a small section in the time series where the signal is
frequency of modulation in five discrete steps each of whictperiod 4 before complicated dynamics takes over. When the
last about 100 cycles. These are separated by unmodulaté@quency is reduced furthé®8) there is a small period of
periods lasting the same amount of time. This is schematitransient behavior at the start of the modulation but the in-
cally shown as sine waves separated by horizontal lines itensity quickly settles down to period 4 pulsations and re-
Fig. 11. This sequence is sandwiched between two rammains there until the modulation is turned off. This is shown
functions. The purpose of the ramp is to locate the chaoi more detail in Fig. 12. Decreasing the modulation fre-
threshold for the laser system, which was used to check thafuency further97) destroys any period 4 behavior in favor
of complicated dynamics, although there now is a small sec-
tion in the time series where period 7 emerges, but does not
persist for the modulation duration. Finally, decreasing the
frequency by one more stdp6) results in the intensity fol-
lowing a period 7 orbit after a relatively short initial irregular
behavior. These results are typical. It is instructive to analyze
the dynamics of the system by constructing a Lorenz map
\/ from the intensity data. This is a plot of the peak intensity of

0.15

o

y (Arb. units)
=
=
[

<

W ﬂM’\UM a pulse against the peak intensity of the previous péé
i 100 93 98 97 96 I For a Lorenz-like chaotic system a cusp shaped curve is

%J—wu MMLA traced out[27]. Figure 13 shows the Lorenz Maps of the
0.1 ‘ chaotic systenta) without modulation andb) with modula-

1050 051 152 253 35 tion for the period 4 case. Without modulation there is the
Time (ms) characteristic cusp shape indicative of chaos. With modula-

FIG. 11. The lower trace represents the dynamics applied to thgOn four deflnl_te regions b_ecome aPpaFe”t- AII_pOIntS are
pump. This consists of a triangle wave form of low frequency, con_nepted by I|_nes to give t|m_e or_de_rlng_mformanon, so that
followed by five sinusoidal wave forms labeled 100. ,96with p_e”_Od'(_: behavior can b‘? easily d'_SthU'SheO_' from a nonpe-
relative frequency 100 .. ,96, respectively, followed by another fiodic signal or chaos, since a periacsignal will appear as
slow triangle wave form. The triangle wave form is used as a diag@nn-sided polygon. The lines outside this polygon are due to
nostic to locate the chaos threshold. The five sine waves representf€ transient behavior before control. This metastable behav-
systematic step through the frequency parameter at fixed amplitud&r is due to the nonperfect intersection of the attractor cor-
This gives us information on how close controlled orbits are inresponding to the unmodulated chaotic laser, with the attrac-
frequency, and the width of control. The upper trace is FIR laseitor of the modulated laser, and the weak stability of the new
output where only the maximum intensity peaks are displayed. 1lattractor as discussed earlier. Sampling error and detector
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5 FIG. 14. Fourier spectra for two different harmonic generation
‘;—;' 0.10" § experiments{al) and (b1) are the spectra of the FIR laser during
5 ’ 1 modulation to give periods 4 and 7 respectively. The corresponding
.y X : x dynamics applied to the pump are shown(@2 and (b2), respec-
~ 005t B % | tively. The triangles indicate the position of the integer harmonics,
’ “ while the stars indicate rational harmonics. In both cases the maxi-
mum peak in the FIR spectra correspond the the fundamental pul-
‘ ‘ ‘ sation frequency of the unmodulated chaos.
0.00 0.05 0.10 0.15 0.20

I(t) (arb units) It has been found that the dependence of the locking ratios
on a control parameter forms a Devil’s staircase in the circle
FIG_. 13. Loren_z maps of the_ FIR laser _output are _constructeqnap[28] and in the Bonhoeffer Van der Pol modéb], and
from Fig. 12.() Without modulation andb) with modulation. The s ngidered to be a universal phenomena. The Devil's stair-
cusp shape ita) is CharaCte”St.'C of LOr?r?Z""‘e chaos. The poly- case is made up of rational numbers belonging to the Farey
gon shape of(b) when the points are joined shows period four . . - .
pulsations. sequence. That is, given twp locking ratjps) andr/.s there
can be another locking ratio op(+r)/(gq+s) restricted to
|ps—qr|=1. We have found six of these locking ratios 1:1,
noise cause the four points of the polygon to have soma:2, 1:3, 3:4, 5:6, and 5:7. These lie on six stairs of the
spread from an ideal polygon generated from noiselespevil’s staircase on a graph of locking ratio against modula-
points. Figure 1éal) and 14b1) are the spectra of the modu- tion frequency. We cannot explicitly assign lengths to each
lated FIR laser for period 4 and 7, respectively. The associef these stairs as the modulation frequency could only be
ated pump spectra are shown on pl@g8 and (b2). altered in discrete stepcl%). To get anestimate of the
A similar sequence of modulation was applied to thelengths of each of the stair we return to the experimental data
pump which resulted in the generation of a period 6 orbitsummarized in Fig. 11. The segments label@® and (97)
shown in Figure 15. The frequency spectra of the modulateghow windows of period 4 and period 7, respectively, before
pump and laser output is shown on Figure 16. It is clear thatomplicated dynamics takes over as mentioned earlier. This
the pump modulation frequency is not on the fundamentais not a simple phase slip of the period 4 and period 7 orbits,
pulsation frequency of the laser outpig but at2f. as can occur at the boundary of an Arnold tondGé].
These results show that the fundamental pulsation freTherefore these two segments lie outside the Arnold tongues,
guency of the FIR lasefy does not coincide with any of the thus we can be sure that the width of these tongues are less
harmonics of the pump, since control to period 4, 6, and than 1% for a modulation depth of 20%. The period 4 and
required a modulation frequency éff,, 2f,, and2f,, re- period 7 orbits which briefly appear are the result of the
spectively. From the time domain we know that the pumptrajectories in phase space finding a period 4 and period 7
modulation and the FIR laser output are phase locked. Thisaddle orbit. The trajectories follow the stable manifold for a
shows that there are three more Arnold tongues with lockindew periodic cycles before the unstable manifold of the
ratios 3:4, 5:6, and 5:7, respectively. For the real Lorenzmaddle orbit takes effect and repels it to another torus. There-
equations, locking ratios of the fornh-0):I and (-2):1 were  fore we know the lengths on the stairs in the Devil's staircase
predicted fol >10(3]. In our casd was 3, 4, and 5, respec- of our data would have an upper bound of 1% of the modu-
tively. lation frequency, and a nonzero lower bound since these ex-
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FIG. 15. Control to period 6. The lower trace is the pump and

the upper trace is the FIR laser output. FIG. 16. Control to period 6. The lower trace is the frequency

spectra of the pump during modulation and the upper trace is the

) ) frequency of the FIR laser during modulation.
periments were repeatable. Thus the narrow width of modu-

lation frequency_required to give cont_rol strongly su_ggeststhe pump at the fundamental pulsation frequency of the cha-
thatt rels_onlgall(n(},e tIS ;aklr;gbpl_lacte_:, tha}t tlhs the :nglczhanlsrr:j_fo(gtic laser to generate not only integer harmonics of the
controt1s fikely 1o be stabiiization of the unstable periodic pump, but also rational harmonics that are not present in the

orbit in the modulated system. ump modulation frequency. We have also shown that con-
Experimental difficulties such as drift of the laser param—p P ) q y. W .
rol is not restricted to modulating at the harmonics of the

eters and discreteness of modulation frequency it is difficuli d | oulsation f . onal val
to locate the positions of each stable island in the paramet pndamental pulsation frequency, as pumping at rational val-

space. Elsewhere we present a theoretical treatment that eif€S Of the harmonic, according to specific values of the Farey
ables a more systematic exploration of the number and stru§€duence, also gave control. We therefore expect there are

ture of these islands in control parameter sp@a. other locking ratios which could give control. We found that
the Arnold tongues were close together but they did not

overlap thus allowing control to a unique period for particu-
lar parameter values. The width of the tongues in frequency
We have demonstrated experimentally that a class C lasepace is very narrow, since changing any parameter of the
can be controlled to a periodic state even though it is driverorder of 1% destroyed control. It is likely that the mechanism
above the chaos threshold, by applying an appropriate modder control is stabilization of one of the existing closely
lation frequency to the pump. It is also possible to modulatespaced unstable periodic orbits in the modulated system.

IV. CONCLUSION
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