
February 1, 1992 / Vol. 17, No. 3 / OPTICS LETTERS 221

Generation of optical phase singularities
by computer-generated holograms
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Laser beams that contain phase singularities can be generated with computer-generated holograms, which in
the simplest case have the form of spiral Fresnel zone plates.

There has recently been considerable interest in op-
tical fields that exhibit phase singularities, which
manifest themselves as isolated dark spots in the
modal patterns of certain lasers. Each dark spot
has a topological charge that represents the number
of 2vr accumulated when the phase gradient is inte-
grated around it. The wave fronts near a singular-
ity have a helical structure, while the field at the
singularity must be zero because of the ambiguous
phase; hence the dark spot.

It has been shown theoretically how, under the
influence of nonlinear interactions, frequency-
degenerate transverse modes can lock together with
a fixed phase difference to produce stable patterns
that contain one or more of the singularities.' Such
modal patterns have also been observed experimen-
tally.2 -

4 Uncontrolled generation of random arrays
of singularities has also been reported.5

Here we report a means of generating such singu-
larities in a controlled way, using only the simplest
equipment, which amounts to the use of a computer-
generated hologram, or zone plate. The hologram
that is simulated is that of a modal pattern that con-
tains a set of phase singularities using a reference
plane wave. The technique can be extended to pro-
duce patterns of great complexity, but in this Letter
we mainly concentrate on the circularly symmetric
doughnut mode.

If one interferes two coherent optical fields
El exp(iol) and E2 exp(i0 2 ), the resultant spatial in-
tensity pattern is modulated by a 2ElE 2 cos((k + 02)
term, which represents the interference fringes.
The desired interference pattern is between a plane
wave and the lowest-order hybrid doughnut mode,3
Eor/co exp[-(r/w) 2 ]exp(-ikr 2 /2R ± j0). Here k is
the wave number, o) is the spot size, and R is the
radius of curvature of the doughnut Gaussian beam.
The plus or minus refers to the two possible chirali-
ties of the helical wave. The boundary between a
light fringe and a dark fringe occurs when the above
cosine term is zero, and when the beams are col-
linear, this means

kr2

±6 (n ± 1/2)7- + -2R

zone plate) by filling in the region where the modu-
lation term is negative. This produces the pattern
shown in Fig. 1(a), which may be recognized as a
variation on the Fresnel zone plate. Like a normal
zone plate, it will tend to form foci at distances such
that the waves from all over the transparent areas
will arrive in phase, but unlike normal zone plates,
symmetry is broken on the axis as waves from dia-
metrically opposite regions will always cancel out.
When such a hologram is illuminated with coherent
light, a helical wave will be reconstructed. Equa-
tion (1) can be generalized for charge p doughnut
modes; i.e.,

kr2

pO = (n + 1/2)irr + 2R (2)

(n = 0 -1, ±2,...). A charge 2 zone plate is shown
in Fig. 1(b). Note that p = 0 corresponds to the
standard Fresnel zone plate.

If the two interfering beams are not collinear
(i.e., misdirected) then an extra term is added onto
Eq. (2), which becomes

kr 2
p6 = (n + 1/2)ir + 2R+ kr sin y cos 6 (3)

(n = 0 +1, ±2, ... .), where y is the angle of misdirec-
tion. If the radius of curvature R is large, then a
characteristic pattern as shown in Fig. 2 is produced.
The clear signature of the presence of a phase singu-
larity is a defect in the fringe pattern where a new
fringe starts at the location of the singularity. Not
only is the pattern of Fig. 2 the basis of an off-axis

(a) (b)

(1)

(n = 0, ±1_+2 ... ), which is the equation of a double
spiral. We can now produce a binary hologram (or

Fig. 1. Computer-generated zone plates.
(b) Charge 2.

(a) Charge 1.
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way for comparison. All the plates were able to form
images of bright objects such as the Sun. Under
illumination from a spatially filtered He-Ne laser,
the zone plates, including the standard Fresnel zone
plates, produced the expected family of focal regions.
To separate the fundamental beam from the undif-
fracted light and higher-order Fresnel images, a
5-cm focal-length lens was placed at the fundamental
focus. The lens passed the helical wave but caused
the unwanted light to focus and then spread rapidly.
The helical doughnut mode produced by the spiral
zone plate was then easily viewed on a screen sev-
eral meters away and was recorded by an EDC-1000
CCD camera with a resolution of 196 pixels by
165 pixels and 256 levels of gray. Note that in the
examples shown, bright areas appear black.

Fig. 2. Theoretical interference pattern produced by
interfering a Gaussian Hermite TEMol* hybrid mode con-
taining a singly charged singularity with a slightly in-
clined plane wave. The signature of a phase singularity
is the defect in the fringe structure where an interference
fringe starts at the location of the singularity.

Fig. 3. CCD camera photograph of a typical recon-
struction of a Gaussian Hermite TEMo,* hybrid mode (or
doughnut mode) by He-Ne laser illumination of the zone
plate represented by Fig. 1(a).

hologram for helical wave production, but it is also
the key to the subsequent detection of such waves by
interferometry. 4

A number of spiral zone plates were made by photo-
reducing laser-printed patterns of A4 size
(210 mm x 297 mm) generated by a microcomputer.
An appropriate scale is determined through Eq. (2),
which indicates that when a plate is illuminated by a
plane wave, a focus will be produced at a distance R,
which is conveniently made to be approximately
30 cm. Plates for both charge 1 and 2 (27r and
4v phase integrals) doughnuts were made; the helic-
ity can be changed by reversing the plate. Normal
(circular) zone plates were also made in the same

Fig. 4. (a) CCD picture of interference fringes obtained
by interfering two doughnut beams in the Mach-Zehnder
interferometer setup. By comparison with Fig. 2, we see
directly the occurrence of the phase singularities of each
beam. (b) Theoretical interference pattern produced by
interfering two misaligned and misdirected doughnut
modes. Again we see the two signatures of the phase sin-
gularities and the similarity to (a).
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Fig. 5. Optical leopard produced by a hologram designed
to reconstruct a Gaussian Hermite TEM2 0* hybrid mode.

A typical helical doughnut mode produced by the
charge 1 plate is shown in Fig. 3. The fact that the
central minimum is persistent, not being filled in by
diffraction over many meters of propagation, is an
indication that a phase singularity is present, as can
be confirmed by interferometry. A convenient way
to do this is to use a Mach-Zehnder interferometer
to duplicate the irradiance pattern and to interfere
the two slightly displaced beams together.4 6 The
result is two positions where a singularity is super-
imposed on a region of relatively constant phase
similar to the local region around the singularity in
Fig. 2. The extra fringe generated at each singular-
ity is clearly visible in Fig. 4(a). Figure 4(b) shows
for comparison the theoretical irradiance distribu-
tion calculated by using the full equations for two
charge 1 doughnuts that are slightly misaligned and
misdirected. Similarly, two extra fringes appear in
the charge 2 case.

Although we have shown clearly that spiral zone
plates can generate helical modes, they suffer many
problems common to on-axis holograms of the Gabor
type, particularly the lack of separation of the re-
constructed beams from each other and the incident
light, as well as the multiplicity of images generated
by the binary nature of the pattern. Several sinus-
oidal holograms of various charges were made by
assigning a linear gray scale only to the cosine inter-
ference term mentioned above at the highest spatial

resolution achievable for our particular laser printer.
These holograms produced helical beams similar in
quality to those of the zone plates in the same ap-
paratus without the problem of multiple orders.
Since these results are similar to those of the zone
plates, they will not be shown here. However, shown
in Fig. 5 is the beam produced by a hologram de-
signed to produce a Gaussian Hermite TEM2 0* hy-
brid mode, or optical leopard.2 This beam consists
of a pair of Gaussian Hermite TEM20 and TEM02
modes of equal amplitude locked together with a r/2
phase shift. This combination produces a pattern
of five bright peaks and four singly charged singu-
larities, two positive and two negative, arranged on
the vertices of a square, with diametrically opposed
singularities having the same charge. For complex
sets of singularities, holograms are computationally
easier to produce than their corresponding zone
plates since no boundaries need be found.

Our results show that it is relatively easy to pro-
duce optical fields that contain simple patterns
of phase singularities, previously obtained only
through nonlinear interactions in lasers, by simple
optical techniques that involve computer-generated
holograms, or zone plates. Not only does this
greatly simplify the study of possible applications of
such beams, but the holograms can be used in fur-
ther optical techniques such as Fourier optic pattern
recognition to identify the presence of singularities
in complex fields.
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